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ABSTRACT

Near Threshold Computing: From Single Core to Many-Core Energy Efficient
Architectures

by
Ronald Dreslinski, Jr

Chair: Trevor N. Mudge

Over the past four decades, the number of transistors on a chip has increased exponen-
tially in accordance with Moore’s law. This has led to progress in diversified computing
applications, such as health care, education, security, and communications. A number of
societal projections and industrial roadmaps are driven by the expectation that these rates
of improvement will continue, but the impediments to growth are more formidable today
than ever before. The largest of these barriers is related to energy and power dissipation,
and it is not an exaggeration to state that developing energy-efficient solutions is critical
to the survival of the semiconductor industry. Extensions of today’s solutions can only go
so far, and without improvements in energy efficiency they are in danger of running out of
steam.

When examining the history of computers, a pattern emerges: successive generations
of technologies, ranging from vacuum tubes to bipolar to NMOS-based technologies, were
replaced when their energy overheads became prohibitive. However, there is no clear suc-
cessor to todays technology, CMOS. The available alternatives are far from being commer-
cially viable, and none has gained sufficient traction, or provided the economic justification
for overthrowing the large investments made in today’s CMOS-based infrastructure. There-
fore, there is a strong case supporting the position that solutions to the power conundrum
must come from enhanced devices, design styles and architectures, rather than a reliance on
the promise of radically new technologies becoming commercially viable. This disserta-
tion proposes that the solution to this energy crisis is the universal application of aggressive
low voltage operation across all computation platforms. This can be accomplished by tar-
geting so-called “near-threshold computing” (NTC) and by proposing novel methods to

xiii



overcome the barriers that have historically relegated ultra-low voltage operation to niche
markets. In particular, this dissertation explores the performance barrier that prevents the
widespread adoption of NTC and provides architectures for single-core, multi-core, many-
core, and digital signal processing systems. As a final proof of concept a 3D integrated
prototype of 128 ARM Cortex-M3 cores and 256MB of DRAM is presented that shows a
6.4X improvement in energy-efficiency over the Intel Atom processor.
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CHAPTER 1

Introduction

Over the past four decades, the number of transistors on a chip has increased expo-
nentially in accordance with Moore’s law [63]. Moore’s seemingly innocuous observation
made in 1965, characterized in precise technical terms by Dennard [24] in 1974, has con-
tinued to hold until the present day. This has fueled the computing growth that we have
come to expect—improved performance, increased density, and reduced energy per device.
The ramifications have been widespread for all segments of society, improving health care,
education, security, communications, etc. Indeed devices almost unimaginable a genera-
tion ago are common place in todays society, such as cell phones, navigation systems, and
cloud computing. If Moore’s law continues to hold we can expect further exciting devel-
opments for all segments of society. For example it may enable handheld medical devices,
such as diagnostic imaging devices, that presently are limited in use by their immense cost
and size. Thus turning machines like ultrasound scanners into common day devices like
the thermometer found in everyones medicine cabinet.

Todays current technology, complementary metal oxide semiconductors (CMOS), has
continued to march in the direction of miniaturization per Moore’s law [63]. New silicon-
based technologies such as FinFET devices [37] and 3D integration [87] provide a path to
increasing transistor counts in a given footprint. However, using device size as the met-
ric of progress has become misleading since improvements in packing densities no longer
translate into proportionate increases in performance or energy efficiency. Starting around
the 65nm node, device scaling no longer delivers the energy gains that drove the semicon-
ductor growth of the past several decades, as shown in Figure 1.1. The supply voltage has
remained essentially constant since then and dynamic energy efficiency improvements have
stagnated, while leakage currents continue to increase. Heat removal limits at the package
level have further restricted more advanced integration. Together, such factors have created
a curious design dilemma: more gates can now fit on a die, but a growing fraction cannot
actually be used due to strict power limits.
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  Figure 1.1: Technology scaling trends of supply voltage and energy.

At the same time, we are moving to a “more than Moore” world, with a wider diver-
sity of applications than the microprocessor or ASICs of ten years ago. Tomorrow’s design
paradigm must enable designs catering to application spanning from high-performance pro-
cessors and portable wireless applications, to sensor nodes and medical implants. Energy
considerations are vital over this entire spectrum, including:

1) High-performance computers, targeted for use in data centers. These create large
amounts of heat and require major investments in power and cooling infrastructure, result-
ing in major environmental and societal impact. In 2006 data centers consumed 1.5% of
total US electricity, equal to the entire US transportation manufacturing industry [68], and
alarmingly, data center power is projected to double every ∼5 years. These systems are the
backbone of cloud computing.

2) Personal computers are becoming increasingly wireless and miniaturized, and are
limited by tradeoffs between battery lifetimes (days) and computational requirements (e.g.,
high-definition video). Wireless applications increasingly rely on digital signal processing.
While Moore’s law enables greater transistor density, only a fraction may be used at a time
due to power limitations and application performance is therefore muzzled by power limits,
often in the 500mW-5W range.

3) Sensor-based computer systems critically depend on ultra-low power (≤µW in stand-
by) and reduced form-factor (mm3). These promise to unlock new semiconductor applica-
tions, such as implanted monitoring and actuation of medical devices, as well as ubiquitous
environmental monitoring, e.g., structural sensing within critical infrastructure elements
such as bridges.
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The aim of the designer in this era is to overcome the challenge of energy efficient
computing and unleash performance from the reins of power to re-enable Moores law in
the semiconductor industry. The proposed strategy is to provide 10 times (10X) or more
improvements in energy efficiency at constant performance through widespread application
of near-threshold computing (NTC), where devices are operated at or near their threshold
voltage (Vth). By reducing supply voltage (Vdd) from a nominal 1.1V to 400-500mV,
NTC obtains as much as 10X energy efficiency gains and represents the re-establishment
of voltage scaling and its associated energy efficiency gains.

The use of ultra-low voltage operation, and in particular subthreshold operation (Vdd

< Vth), was first proposed over three decades ago when the theoretical lower limit of Vdd

was found to be 36mV [84]. However, the challenges that arise from operating in this
regime have kept subthreshold operation confined to a handful of minor markets, such as
wristwatches and hearing aids. To the mainstream designer, ultra-low voltage design has
remained little more than a fascinating concept with no practical relevance. However, given
the current energy crisis in the semiconductor industry and stagnated voltage scaling some
foresee the need for a radical paradigm shift where ultra-low voltage operation is applied
across application platforms and forms the basis for renewed energy efficiency.

NTC does not come without some barriers to widespread acceptance. In this disserta-
tion three key challenges are identified that have been poorly addressed to date with respect
to low voltage operation, specifically: 1) 10X or greater loss in performance, 2) 5X increase
in performance variation, and 3) 5 orders of magnitude increase in functional failure rate
of memory as well as increased logic failures. Overcoming these barriers is a formidable
challenge requiring a synergistic approach combining methods from the algorithm and ar-
chitecture levels to circuit and technology levels. Chapter 2 presents a top level view of
these barriers and current research being conducted to overcome them. The next chapter,
Chapter 3, presents a cache architecture that uses NTC to lower the power of single core
systems where area is a major constraint. The remaining chapters will pick up the main
theme of “Overcoming Performance Loss”, which is the primary focus of this dissertation.

Solving the performance loss associated with NTC is critical in order to meet the strin-
gent demands of the broad range of future applications, from tiny sensors to warehouse
scale servers (such as Google and Facebook). There are a variety of code and architectures
for this broad application space. For many, the use of parallelism—splitting the code up
onto multiple cores—can be accompanied with running each core slower to consume less
total power. The result can be used to improve the performance of the system while still
retaining the energy gains of NTC operation. In Chapter 4 this dissertation explores the use
of parallelism in multi-core processors for small scale systems, targeting handheld, laptop,
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and desktop computing. In such systems NTC operation creates different optimal oper-
ating points for logic and memory devices, as such, NTC offers a unique design tradeoff
where several cores can be clustered together to connect to a single cache, reducing power.
In Chapter 5, this work is expanded to cover digital signal processing (DSP) chips, where
there are unique architectural constraints due to the highly parallel replication of logic, and
more stringent memory constraints.

While parallelism can help overcome performance bottlenecks, not every piece of code
or architectural design space allows for parallelism. For example, in small sensor proces-
sors, where form factor is essential, replicating a design requires to much overhead. Even
for systems that can exploit parallelism, inherently sequential pieces of code/work can still
form bottlenecks to scalability. To address this, in Chapter 6 the work on multi-core and
many-core architectures is augmented by the use of voltage boosting—increasing the volt-
age for short periods of time to overcome serial bottlenecks in parallel applications.

Finally, Chapter 7 expands the multi-core research into systems with 100’s of cores,
currently referred to as many-core architectures. In particular the design of a 3D inte-
grated chip—one where multiple silicon wafers are stacked together and connected with
tiny through-silicon-via’s—is explored. This type of 3D design provides an interesting
synergy with NTC, particularly because the energy-efficiency of NTC designs reduces the
thermal management constraints associated with large 3D stacks of silicon. In this Chapter
a prototype design, Centip3De, is developed for fabrication and the energy savings of the
design are analyzed. The Centip3De system connects 128 ARM Cortex-M3 processors and
256 MB of DRAM in a 7-layer 3D stack, and was sent for fabrication in a 130nm process.
This design achieves an energy efficiency improvement of 6.4X compared to an Intel Atom
processor implemented in 45nm technology.

Ultimately this dissertation shows through detailed architectural simulation and chip
design/fabrication that Near Threshold Computing is a viable way to extend the lifetime of
Moore’s law. By extending its life we will enable the continued growth in computational
power that designers and users have come to expect.
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CHAPTER 2

Near Threshold Operation

Power has become the primary design constraint for chip designers today. While
Moores law continues to provide additional transistors, power budgets have begun to pro-
hibit those devices from actually being used. To reduce energy consumption, voltage scal-
ing techniques have proved a popular technique with subthreshold design representing the
extreme endpoint of voltage scaling. Although it is extremely energy efficient, subthresh-
old design has been relegated to niche markets due to its major performance penalties. This
chapter defines and explores Near Threshold Computing (NTC), a design space where the
supply voltage is approximately equal to the threshold voltage of the transistors. This re-
gion retains much of the energy savings of subthreshold operation with more favorable
performance and variability characteristics. This makes it applicable to a broad range of
power-constrained computing segments from sensors to high performance servers.

NTC does not come without some barriers to widespread acceptance. In this chapter
the focus is on three key challenges that have been poorly addressed to date with respect to
low voltage operation, specifically: 1) 10X or greater loss in performance, 2) 5X increase
in performance variation, and 3) 5 orders of magnitude increase in functional failure rate of
memory as well as increased logic failures. Overcoming these barriers is a formidable chal-
lenge requiring a synergistic approach combining methods from the algorithm and architec-
ture levels to circuit and technology levels. The focus of this dissertation is on overcoming
the performance loss. Other research is also being conducted to cover the remaining two
barriers, which will be discussed briefly in this chapter. Much of the Introduction and this
chapter was conducted with the collaboration of my colleague Michael Wieckowski. This
work appears as a part of a journal article in The Proceedings of the IEEE [25].
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2.1 Defining Operating Regions

Energy consumption in modern CMOS circuits largely results from the charging and
discharging of internal node capacitances and can be reduced quadratically by lowering
supply voltage (Vdd). As such, voltage scaling has become one of the more effective meth-
ods to reduce power consumption in commercial parts. It is well known that CMOS cir-
cuits function at very low voltages and remain functional even when Vdd drops below the
threshold voltage (Vth). In 1972, Meindl et al. derived a theoretical lower limit on Vdd

for functional operation, which has been approached in very simple test circuits [84, 33].
Since this time, there has been interest in subthreshold operation, initially for analog cir-
cuits [92, 60, 61] and more recently for digital processors [81, 69, 48, 93, 16, 102], demon-
strating operation at Vdd below 200mV. However, the lower bound on Vdd in commercial
applications is typically set to 70% of the nominal Vdd due to concerns about robustness
and performance loss [88, 44, 39].

Figure 2.1: Energy and delay in different supply voltage operating regions.

Given such wide voltage scaling potential, it is important to determine the Vdd at which
the energy per operation (or instruction) is optimal. In the superthreshold regime (Vdd >

Vth), energy is highly sensitive to Vdd due to the quadratic scaling of switching energy
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with Vdd . Hence voltage scaling down to the near-threshold regime (Vdd ∼ Vth) yields an
energy reduction on the order of 10X at the expense of approximately 10X performance
degradation, as seen in Figure 2.1 [98]. However, the dependence of energy on Vdd be-
comes more complex as voltage is scaled below Vth. In subthreshold (Vdd < Vth), circuit
delay increases exponentially with Vdd , causing leakage energy (the product of leakage
current, Vdd , and delay) to increase in a near-exponential fashion. This rise in leakage en-
ergy eventually dominates any reduction in switching energy, creating an energy minimum
seen in Figure 2.1. The near threshold operating point is meant to be near the threshold
voltage but the optimal location may vary depending on application and technology node.

The identification of an energy minimum led to interest in processors that operate at
this energy optimal supply voltage [93, 102, 34] (referred to as Vmin and typically 250mV-
350mV). However, the energy minimum is relatively shallow. Energy typically reduces by
only ∼2X when Vdd is scaled from the near-threshold regime (400-500mV) to the sub-
threshold regime, though delay rises by 50-100X over the same region. While acceptable
in ultra-low energy sensor-based systems, this delay penalty is not tolerable for a broader
set of applications. Hence, although introduced roughly 30 years ago, ultra-low voltage
design remains confined to a small set of markets with little or no impact on mainstream
semiconductor products.

in energy and an 11.4X reduction in frequency are ob-
served. For the Phoenix processor a nominal 9.13 MHz and
29.6 pJ/inst translate to a 9.8X reduction in energy and a
9.1X reduction in frequency. These trade-offs are much
more attractive that those seen in the subthreshold design
space and open up a wide variety of new applications for
NTC systems.

IV. NTC BARRIERS

Although NTC provides excellent energy-frequency trade-
offs, it brings its own set of complications. NTC faces three
key barriers that must be overcome for widespread use;
performance loss, performance variation, and functional
failure. In the following subsections we discuss why each
of these issues arises and why they pose problems to the
widespread adoption of NTC. Section V then addresses the
recent work related to each of these barriers.

A. Performance Loss
The performance loss observed in NTC, while not as

severe as that in subthreshold operation, poses one of the

most formidable challenges for NTC viability. In an in-
dustrial 45 nm technology the fanout-of-four inverter delay
(FO4, a commonly used metric for the intrinsic speed of a
semiconductor process technology) at an NTC supply of
400 mV is 10X slower than at the nominal 1.1 V. There
have been several recent advances in architectural and
circuit techniques that can regain some of this loss in
performance. These techniques, described in detail in
Section V-A, center around aggressive parallelism with a
novel NTC oriented memory/computation hierarchy. The
increased communication needs in these architectures is
supported by the application of 3-D chip integration, as
made feasible by the low power density of NTC circuits. In
addition, new technology optimizations that opportunisti-
cally leverage the significantly improved silicon wearout
characteristics (e.g., oxide breakdown) observed in low-
voltage NTC can be used to regain a substantial portion of
the lost performance.

B. Increased Performance Variation
In the near-threshold regime, the dependencies of

MOSFET drive current on Vth, Vdd, and temperature ap-
proach exponential. As a result, NTC designs display a
dramatic increase in performance uncertainty. Fig. 5
shows that performance variation due to global process
variation alone increases by approximately 5X from !30%
(1.3X) [22] at nominal operating voltage to as much as
400%, (5X) at 400 mV. Operating at this voltage also
heightens sensitivity to temperature and supply ripple,
each of which can add another factor of 2X to the per-
formance variation resulting in a total performance un-
certainty of 20X. Compared to a total performance
uncertainty of !1.5X at nominal voltage, the increased
performance uncertainty of NTC circuits looms as a daunt-
ing challenge that has caused most designers to pass over
low-voltage design entirely. Simply adding margin so that

Fig. 3. Subliminal processor frequency and energy breakdowns at

various supply voltages.

Fig. 4. Phoenix frequency and energy breakdowns at

various supply voltages. Fig. 5. Impact of voltage scaling on gate delay variation.
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Figure 2.2: Subliminal processor frequency and energy breakdowns at various supply volt-
ages.

2.2 NTC Analysis

Recent work at many leading institutions has produced working processors that operate
at subthreshold voltages. For instance, the Subliminal [34] and Phoenix processors [80]
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  Figure 2.3: Phoenix frequency and energy breakdowns at various supply voltages.

designed by Hanson et al. provide the opportunity to experimentally quantify the NTC
region and how it compares to the subthreshold region. Figure 2.2 and 2.3 present the
energy breakdown of the two different designs as well as the clock frequency achieved
across a range of voltages. As discussed in Section 2.1, there is a Vmin operating point that
occurs in the subthreshold region where energy usage is optimized, but clock frequencies
are limited to sub-1MHz values (not pictured for Phoenix as testing was not conducted in
subthreshold). On the other hand, only a modest increase in energy is seen operating at the
NTC region (around 0.5V), while frequency characteristics at that point are significantly
improved. For example, at nominal voltages, the Subliminal processor runs at 20.5 MHz
and 33.1 pJ/inst, while at NTC voltages, a 6.6X reduction in energy and an 11.4X reduction
in frequency are observed. For the Phoenix processor a nominal 9.13 MHz and 29.6 pJ/inst
translate to a 9.8X reduction in energy and a 9.1X reduction in frequency. These tradeoffs
are much more attractive than those seen in the subthreshold design space and open up a
wide variety of new applications for NTC systems.

2.3 NTC in Different Computing Segments

2.3.1 NTC Integration in Ultra Energy-Efficient Servers

The exponential growth of the web has yielded a dramatic increase in the demand for
server style computers with the installed base of servers expected to exceed 40 million by
2010 [40]. Server growth is accompanied by an equally rapid growth in the energy demand
to power them. For example, it is estimated that the five largest internet sites consume at
least 5MW each [47].
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The tier 1 of a data center that serves web pages provides a perfect opportunity for
NTC. The requests in these servers represent the bulk of requests to these data centers [82],
consuming 75% of the overall energy. The workload is a stream of independent requests to
render web pages that can be naturally executed in parallel. HTML is fetched from mem-
ory, subjected to relatively simple operations, and returned to memory without requiring
extensive shared data. To achieve this, 10-100s of NTC cores on a single die can be used
to obtain very high throughput with unprecedented energy efficiency.

2.3.2 NTC Integration in Personal Computing

The personal computing platform continues to evolve rapidly. WiFi is a standard on
laptops but other mobile wireless communications are also starting to be supported. Future
devices must be able to move seamlessly among communication alternatives. Such systems
will combine a high level of processing power along with signal processing capabilities
integrated into a much smaller form factor than todays laptops. Battery life is expected
on the order of days, while functionality requirements are extreme and may include high-
definition video, voice recognition, along with a range of wireless standards. The features
of PC platforms that distinguish them from the two other systems are the dual needs to cope
with variable workloads and energy efficient wireless communication.

In the PC platform space, cores may run at widely varying performance/energy points.
The voltage and frequency of the cores and their supporting peripherals can be dynamically
altered in real time to meet the constraints of performance and power consumption. This
dynamic voltage and frequency scaling technique (DVFS) can be leveraged to enable adap-
tive NTC circuits in the personal computing space [71]. The scaling method may be driven
by operating system commands and/or distributed sensors. Exploiting phase variations in
workloads [11], efficient phase detection techniques need to be established for multicore
multithreaded processors to enable power management schemes in achieving savings with-
out significantly compromising performance.

2.3.3 NTC Integration in Sensor Networks

With advances in circuit and sensor design, pervasive sensor-based systems, from single
to thousands of nodes, are quickly becoming a possibility. A single sensor node typically
consists of a data processing and storage unit, off-chip communication, sensing elements,
and a power source. They are often wirelessly networked and have potential applications
in a wide range of industrial domains, from building automation to homeland security to
biomedical implants. The versatility of a sensor is directly linked to its form factor—for a
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sensor to be truly useful in many new application areas, a form factor on the order of 1mm3

is desirable while maintaining a lifetime of months or years.
To meet the above requirements, the key limiting constraint is energy. Both sensors

and electronics are readily shrunk to <1mm3 in modern technologies. However, current
processors and communication systems require batteries that are many orders of magnitude
larger than the electronics themselves (e.g., 50mm3 processor die in a laptop vs. 167cm3

4-cell lithium-ion battery). Hence, whether a sensor node is powered through batteries,
harvesting, or both, power consumption will limit overall system size. To integrate a sensor
node in <1mm3, energy levels must be reduced by 4-7 orders of magnitude. Processing
speed is not a major constraint in most sensor applications [67], easing the integration
of NTC. Initial investigations showed simple sensor architectures coupled with NTC can
obtain an active energy reduction of ≥100X [102].

2.4 NTC Barriers

Although NTC provides excellent energy-frequency tradeoffs, it brings its own set of
complications. NTC faces three key barriers that must be overcome for widespread use;
performance loss, performance variation, and functional failure. The following subsec-
tions discuss why each of these issues arises and why they pose problems to the widespread
adoption of NTC. Section 2.5 then addresses the recent work related to each of these bar-
riers. The focus of this dissertation will be on overcoming the performance loss, although
brief discussions of the other barriers is addressed for completeness.

2.4.1 Performance Loss

The performance loss observed in NTC, while not as severe as that in subthreshold op-
eration, poses one of the most formidable challenges for NTC viability. In an industrial
45nm technology the fanout-of-four inverter delay (FO4, a commonly used metric for the
intrinsic speed of a semiconductor process technology) at an NTC supply of 400mV is 10X
slower than at the nominal 1.1V. There have been several recent advances in architectural
and circuit techniques that can regain some of this loss in performance. These techniques,
described in detail in Section 2.5.1, center around aggressive parallelism with a novel NTC
oriented memory/computation hierarchy. The increased communication needs in these ar-
chitectures is supported by the application of 3D chip integration, as made feasible by the
low power density of NTC circuits. In addition, new technology optimizations that oppor-
tunistically leverage the significantly improved silicon wearout characteristics (e.g., oxide
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breakdown) observed in low voltage NTC can be used to regain a substantial portion of the
lost performance.

in energy and an 11.4X reduction in frequency are ob-
served. For the Phoenix processor a nominal 9.13 MHz and
29.6 pJ/inst translate to a 9.8X reduction in energy and a
9.1X reduction in frequency. These trade-offs are much
more attractive that those seen in the subthreshold design
space and open up a wide variety of new applications for
NTC systems.

IV. NTC BARRIERS

Although NTC provides excellent energy-frequency trade-
offs, it brings its own set of complications. NTC faces three
key barriers that must be overcome for widespread use;
performance loss, performance variation, and functional
failure. In the following subsections we discuss why each
of these issues arises and why they pose problems to the
widespread adoption of NTC. Section V then addresses the
recent work related to each of these barriers.

A. Performance Loss
The performance loss observed in NTC, while not as

severe as that in subthreshold operation, poses one of the

most formidable challenges for NTC viability. In an in-
dustrial 45 nm technology the fanout-of-four inverter delay
(FO4, a commonly used metric for the intrinsic speed of a
semiconductor process technology) at an NTC supply of
400 mV is 10X slower than at the nominal 1.1 V. There
have been several recent advances in architectural and
circuit techniques that can regain some of this loss in
performance. These techniques, described in detail in
Section V-A, center around aggressive parallelism with a
novel NTC oriented memory/computation hierarchy. The
increased communication needs in these architectures is
supported by the application of 3-D chip integration, as
made feasible by the low power density of NTC circuits. In
addition, new technology optimizations that opportunisti-
cally leverage the significantly improved silicon wearout
characteristics (e.g., oxide breakdown) observed in low-
voltage NTC can be used to regain a substantial portion of
the lost performance.

B. Increased Performance Variation
In the near-threshold regime, the dependencies of

MOSFET drive current on Vth, Vdd, and temperature ap-
proach exponential. As a result, NTC designs display a
dramatic increase in performance uncertainty. Fig. 5
shows that performance variation due to global process
variation alone increases by approximately 5X from !30%
(1.3X) [22] at nominal operating voltage to as much as
400%, (5X) at 400 mV. Operating at this voltage also
heightens sensitivity to temperature and supply ripple,
each of which can add another factor of 2X to the per-
formance variation resulting in a total performance un-
certainty of 20X. Compared to a total performance
uncertainty of !1.5X at nominal voltage, the increased
performance uncertainty of NTC circuits looms as a daunt-
ing challenge that has caused most designers to pass over
low-voltage design entirely. Simply adding margin so that

Fig. 3. Subliminal processor frequency and energy breakdowns at

various supply voltages.

Fig. 4. Phoenix frequency and energy breakdowns at

various supply voltages. Fig. 5. Impact of voltage scaling on gate delay variation.
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Figure 2.4: Impact of voltage scaling on gate delay variation.

2.4.2 Increased Performance Variation

In the near-threshold regime, the dependencies of MOSFET drive current on Vth, Vdd ,
and temperature approach exponential. As a result, NTC designs display a dramatic in-
crease in performance uncertainty. Figure 2.4 shows that performance variation due to
global process variation alone increases by approximately 5X from ∼30% (1.3X) [13] at
nominal operating voltage to as much as 400%, (5X) at 400mV. Operating at this voltage
also heightens sensitivity to temperature and supply ripple, each of which can add another
factor of 2X to the performance variation resulting in a total performance uncertainty of
20X. Compared to a total performance uncertainty of ∼1.5X at nominal voltage, the in-
creased performance uncertainty of NTC circuits looms as a daunting challenge that has
caused most designers to pass over low voltage design entirely. Simply adding margin so
that all chips will meet the needed performance specification in the worst-case is effective
in nominal voltage design. In NTC design this approach results in some chips running at
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1/10th their potential performance, which is wasteful both in performance and in energy
due to leakage currents. Section 2.5.2 presents a new architectural approach to dynamically
adapt the performance of a design to the intrinsic and environmental conditions of process,
voltage, and temperature that is capable of tracking over the wide performance range ob-
served in NTC operation. This method is complemented by circuit-level techniques for
diminishing the variation of NTC circuits and for efficient adaptation of performance.

2.4.3 Increased Functional Failure

The increased sensitivity of NTC circuits to variations in process, temperature and volt-
age not only impacts performance but also circuit functionality. In particular, the mismatch
in device strength due to local process variations from such phenomena as random dopant
fluctuations (RDF) and line edge roughness (LER) can compromise state holding elements
based on positive feedback loops. Mismatch in the loops elements will cause it to develop
a natural inclination for one state over the other, a characteristic that can lead to hard func-
tional failure or soft timing failure. This issue has been most pronounced in SRAM where
high yield requirements and the use of aggressively sized devices result in prohibitive sen-
sitivity to local variation.

Figure 2.5: Effects of global and local variation on a standard 6T SRAM cell. (a) Global
Vth reduction resulting in timing failure. (b) Global Vth P-N skew resulting in
write failure. (c) Local Vth mismatch resulting in read upset.

Several variation scenarios for a standard 6T SRAM cell are shown in Figure 2.5. In
(a), global process variation has resulted in both P and N devices being weakened by a
Vth increase resulting in a potential timing failure during both reads and writes. In (b),
a similar global effect has introduced skew between the P and N device strengths. This
is particularly detrimental when the P is skewed stronger relative to the N resulting in a
potential inability to write data into the cell. In (c), random local mismatch is considered
and the worst case is shown for a read upset condition. The cell is effectively skewed
to favor one state over another, and the weak pull-down on the left side cannot properly
combat the strong access device at its drain. As such, the Data node is likely to flip to the
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“1” state during normal read operations. While these examples are shown in isolation, a
fabricated circuit will certainly experience all of them simultaneously to varying degrees
across a die and with different sensitivities to changes in supply voltage and temperature.
The resulting likelihood of failure is potentially very high, especially as supply voltage is
reduced and feature sizes are shrunk.

Figure 2.6: Impact of voltage scaling on SRAM failure rates.

For instance, a typical 65nm SRAM cell has a failure probability of ∼10−7 at nominal
voltage, as shown in Figure 2.6. This low failure rate allows failing cells to be corrected
for using parity checks or even swapped using redundant columns after fabrication. How-
ever, at an NTC voltage of 500mV, this failure rate increases by ∼5 orders of magnitude to
approximately 4%. In this case, nearly every row and column will have at least one fail-
ing cell, and possibly multiple failures, rendering simple redundancy methods completely
ineffective. Section 2.5.3 therefore presents novel approaches to robustness ranging from
the architectural to circuit levels that address both memory failures and functional failure
of flip-flops (FFs) and latches.

2.5 Addressing NTC Barriers

The following subsections will address some of the research being done to overcome
each of the barriers presented in Section 2.4.
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2.5.1 Addressing Performance Loss

Performance loss, as discussed in Section 2.4.1, can significantly hinder the adoption
of NTC. The main focus of this dissertation is architectural techniques to overcome per-
formance loss. The rest of the dissertation will present the parallel architectures to address
this bottleneck, in addition to techniques for systems that can not employ parallelism be-
cause of either area or algorithmic concerns. These architectures span single-, multi-, and
many-core architectures and include techniques for DSP and voltage boosting for serial
bottlenecks.

2.5.2 Addressing Performance Variation

As noted in Section 2.4.2, the combined impact of intrinsic process variations and ex-
trinsic variations, such as fluctuations in temperature and supply voltage, results in a spread
in the statistical distribution of NTC circuit performance of ∼10X compared to designs at
nominal supplies. Traditional methods to cope with this issue, which are largely centered
on adding design margin, are inadequate and hugely wasteful when voltage is scaled, re-
sulting in a substantial portion of the energy efficiency gain from NTC operation being lost.
Hence, in this section architectural and circuit solutions to provide variation tolerance and
adaptivity are discussed.

2.5.2.1 Soft Edge Clocking

The device variation inherent to semiconductor manufacturing continues to increase
from such causes as dopant fluctuation and other random sources, limiting the performance
and yield of ASIC designs. Traditionally, variation tolerant, two-phase, latch-based designs
have been used as a solution to this issue. Alternatively, hard-edge data flip-flops (DFF)
with intentional or useful skew can be used. Both of these techniques incur a significant
penalty in design complexity and clocking overhead.

One potential solution to address timing variation while minimizing overhead is a type
of soft-edge flip-flop (SFF) that maintains synchronization at a clock edge, but has a small
transparency window, or softness. In one particular approach to soft-edge clocking, tunable
inverters are used in a master-slave flip-flop to delay the incoming master clock edge with
respect to the slave edge as shown in Figure 2.7.

As a result of this delay, a small window of transparency is generated in the edge-
triggered register that accommodates paths in the preceding logic that were too slow for
the nominal cycle time—in essence allowing time borrowing within an edge-triggered reg-
ister environment. Hence, soft edge clocking results in a trade-off between short and long
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Figure 2.7: Delaying the master clock creates a window of transparency.

Figure 2.8: FIR filter with soft edge clocking compared to standard flip-flops (SFF); pre-
sented with and without useful skew.
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paths and is effective at mitigating random, uncorrelated variations in delay, which are sig-
nificant in NTC. In theoretical explorations at a nominal super-threshold supply voltage, it
was shown that soft-edge clocking reduced the mean (standard deviation) clock period in
benchmark circuits by up to 22% (25%). Joshi et al. [46] furthered this work by developing
a library based on these soft flip-flops and providing a statistical algorithm for their assign-
ment. In the work by Wieckowski et al. [95], this technique was employed in silicon to
show that small amounts of softness in a FIR filter achieved improvements in performance
of 11.7% over a standard DFF design and improvement of 9.2% compared to a DFF with
useful skew. These increases in performance, shown in Figure 2.8, demonstrate a greater
tolerance to intra-die variation that becomes even more important in the NTC operating
region.

2.5.2.2 Body Biasing

At superthreshold supply voltages, body biasing (BB) is a well known technique for
adapting performance and leakage to global variation of process, voltage, and temperature.
Its use is becoming more widespread and was recently demonstrated in silicon within a
communication processor application [30]. While effective in the superthreshold domain,
the influence of body-biasing becomes particularly effectual in the NTC domain where de-
vice sensitivity to the threshold voltage increases exponentially. Body-biasing is therefore a
strong lever for modulating the frequency and performance in NTC, and is ideally suited as
a technique for addressing the increased detriments of process variation in NTC. Further,
because P and N regions can be adapted separately using body biasing, and because the
relative drive strength of P and N transistors can change dramatically from superthreshold
to NTC, body biasing has the added advantage of allowing the P to N ratio of a design to
be optimally adjusted.

Hanson et al. [33] show that the extreme sensitivity to process variation in NTC design
tends to raise Vmin and reduce energy efficiency. They explore the use of adaptive body-bias
(ABB) techniques to compensate for this variation both locally and globally. Indeed, their
later work on a subthreshold processor [34] implements these techniques in silicon and
demonstrates their effectiveness. They further showed that the body bias voltages that tune
the P to N ratio for optimal noise margin also minimizes energy. Hence, one tuning can be
used to both increase robustness of the design as well as to reduce its energy consumption.
They found that skewing P and N body biases in increments of 5mV to match strengths
enabled them to improve the minimum functional voltage by 24%. For global performance
they improved the variability for several target voltages, as seen in Figure 2.9. This directly
demonstrates the effectiveness of ABB in dealing with variation, especially in low voltage
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Figure 2.9: Body biasing techniques for three target frequencies.

designs, and is a technique that can be directly leveraged in NTC systems to cope with
these same issues.

2.5.3 Addressing Functional Failure

The variations discussed in Section 2.4.3 not only impact design performance but also
design functionality. In NTC the dramatically increased sensitivity to process, temperature
and voltage variations lead to a precipitous rise in functional failure (the likelihood that a
data bit will be flipped), particularly due to drive strength mismatch. In this section, ar-
chitectural and circuit-level techniques for addressing SRAM robustness in NTC operation
are discussed.

2.5.3.1 Alternative SRAM Cells

As mentioned previously, SRAM cells require special attention when considering cache
optimization for the NTC design space. Even though it is clear that SRAM will generally
exhibit a higher Vmin than logic, it will still operate at supply level significant lower than the
nominal case. This in turn reduces cell stability and heightens sensitivity to Vth variation,
which is generally high in SRAM devices to begin with due to the particularly aggressive
device sizing necessary for high density. This problem is fundamental to the standard 6T
design, which is based on a carefully balancing act of relative device sizing to optimize
read/write contention. The only solution to keeping SRAM viable for NTC applications is
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to trade-off area for improved low voltage performance. The question then becomes how
best to do this resize and optimize the 6T devices, or abandon the 6T structure completely?

One example in which the basic 6T structure was maintained can be seen in the work
by Zhai et al. [99]. The cell itself is optimized for single-ended read stability, and a supply
modulation technique is used on a per column basis to improve writeability. Thus, the
read and write operations are effectively decoupled by relying on extra complexity in the
periphery of the core array. The result is a cell that is functional below 200 mV and that
achieves relatively high energy efficiency.

Figure 2.10: Alternative 8T SRAM cell, decoupling the read and write [18].

There have also been a number of alternative SRAM cells proposed that are particularly
well suited for ultra-low voltage operation. For example, Chang et al. [18] developed an
8T design, in Figure 2.10, with the premise of decoupling the read and write operations of
the 6T cell by adding an isolated read-out buffer, as shown in Figure 2.5. This effectively
allows the designer to optimize the write operation sizing independently of the output buffer
and without relying on supply modulation or wordline boosting. This greatly enhances cell
stability, but incurs area overhead in the core array to accommodate the extra devices and
irregular layout.

Similarly, Calhoun and Chandrakasan [16] developed a 10-transistor (10T) SRAM cell
also based on decoupling read and write sizing and operation. The 10T cell is pictured in
Figure 2.11 and offers even better low voltage operation due to the stacking of devices in
the read port, though it suffers a commensurate area penalty. Such alternative SRAM cell
designs successfully cope with the difficulty of maintaining proper operation at high yield
constraints in the sub-threshold operating region, and offer promising characteristics for
realizing reliable cache in NTC-based systems.
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Figure 2.11: Alternative 10T SRAM cell [16].

2.5.3.2 SRAM Robustness Analysis Techniques

The importance of robustness for NTC systems means that credible analyses techniques
must be available. This is particularly true for the case of large level-2 and level-3 (L2 and
L3) caches where low bitcell failure rates are required to achieve high yield. Inaccurate es-
timates of robustness in such cases would lead to wasted die space, in the case of oversized
cells, or large portions of unusable memory, when they are undersized.

Chen et al. [20] have developed a technique to determine proper cell sizing to maintain
the same SRAM cell robustness at NTC voltages as traditional cells have at nominal. The
technique they developed uses importance sampling as a means to determine the cell device
sizes needed for a given robustness to variation. Using importance sampling for yield
estimation, Chen compared a 6T, single-ended 6T with power rail drooping and an 8T
bitcell at an iso-robustness and iso-delay condition. This condition requires that both cells
be designed to tolerate the same level of process variation before functional failure while
operating with the same nominal delay. The results for a 20 cycle latency in terms of SRAM
bitcell area and energy consumption are presented in Figure 2.12 and 2.13. At higher Vdd ,
the differential 6T bitcell has the smallest area. The 8T bitcell becomes smaller below a Vdd

of 450mV and a twenty-cycle latency. As Vdd approaches Vth, all bitcells must be sized
greatly to maintain robustness unless delay is relaxed, making large arrays impractical.
The differential 6T bitcell has the lowest dynamic energy consumption at most supply
voltages. The single-ended 6T bitcell has the lowest leakage per cycle. Vmin increases

19



Figure 2.12: Energy of SRAM topologies for 20-cycle L2 cache across voltages.

Figure 2.13: Size of SRAM topologies for 20-cycle L2 cache across voltages with iso-
robustness.
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with cache size and bank size, and decreases with associativity, activity factor and cache
line length. For common cache configurations, Vmin may be near or even above Vth and
is significantly higher than reported in previously literature. By comparing SRAM bitcells
at an iso-robustness and iso-delay condition, the best SRAM architecture and sizing for a
design can be quickly and accurately chosen. This work will be valuable in assessing the
viability of new SRAM designs, particularly in the NTC domain.

2.6 Conclusions

NTC operation promises to be an interesting solution to maintaing the continued growth
in CMOS technology that has been the norm for the past 20 years. However there are three
key bottlenecks to the widespread adoption of NTC: performance loss, variation, and func-
tional failure. In this chapter NTC operation was defined, the barriers to adoption explained,
and techniques to overcome them were explored. The rest of this dissertation focuses on
overcoming the performance loss bottleneck for a wide range of architectures—single-core,
multi-core, DSP, and many-core—to target an even wider range of applications—from tiny
sensors to warehouse scale servers.
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CHAPTER 3

Single Core Architectures

For modern sensor/embedded processors battery life and area are important design con-
cerns. The use of NTC operation can help reduce power, however stringent area constraints
and/or inherently serial applications prevent the use of parallel architectures to overcome
performance bottlenecks. This chapter explores other uses of NTC operation for single-
core architectures, particularly focusing on the memory system and area overheads.

Current commercial memory technologies have been limited in the degree of supply
voltage scaling that can be performed if they are to meet yield and reliability constraints.
This has limited designers from exploring the near threshold operating regions for embed-
ded processors. Summarizing prior work this chapter shows how proper sizing of memory
cells can guarantee that the memory cell reliability in the near threshold supply voltage
region matches that of a standard memory cell. However, this robustness comes with a
significant area cost. This chapter shows how to employ these cells to build cache archi-
tectures that greatly reduce energy consumption. The chapter then proposes an embedded
processor based on these new cache architectures that operates in a low power mode, with
minimal impact on full performance runtime. The proposed cache uses near threshold tol-
erant cache ways to reduce access energy combined with traditional cache ways to maintain
performance. The access policy of the cache ways is then dynamically reconfigured to ob-
tain energy efficient performance while minimally impacting the high performance mode
runtime. Using near threshold cache architectures results show an energy reduction of 53%
over a traditional filter cache. For the MIBench embedded benchmarks results show on
average an 86% (7.3x) reduction in energy while in low power (10MHz) mode with only
an average 2% increase in runtime in high performance (400MHz) mode. And for SpecInt
applications analysis shows a 77% (4.4x) reduction in energy in low power mode with only
an average 4.8% increase in runtime for high performance mode. In addition the chapter
shows that these trends hold from 130nm to 45nm technology nodes. The work done in
this chapter was conducted with the collaboration of my colleague Greg Chen. This work
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was published as an article at the 41st IEEE/ACM International Symposium on Microar-
chitecture (MICRO) [27].

3.1 Introduction

It was shown in Section 2.5.3 that proper sizing of memory cells can guarantee that
the memory cell reliability in the near threshold supply voltage region can match that of a
standard memory cell. However, this robustness comes with a significant area cost because
the standard SRAM cell must be enlarged This Chapter shows how to employ these cells to
build cache architectures that greatly reduce energy consumption. An embedded processor
based on these new cache architectures that operates in a low power mode, with minimal
impact on full performance runtime is presented.

Using the work done by Chen [19] as a starting point, memory hierarchies in which
some or all of the memory cells in the system are designed to scale their supply voltages
into the near threshold operating region are examined. This will allow for increased energy
savings in low power mode. Then idea of a filter cache [52] is revisited in the context of
near threshold operation and supply voltage scaling. It will be shown that a near threshold
filter cache reduces the energy of a traditional filter cache by 36%. However, the filter cache
has the potential to impact the overall performance of the system in the high performance
mode by increasing the runtime by nearly 20%.

To overcome this a new cache architecture, the Reconfigurable Energy-efficient Near
Threshold (RENT) cache, that reduces the runtime overhead in high performance mode
while maintaining considerable energy savings in low power mode is proposed. The cache
is composed of one near threshold tolerant cache way and several standard SRAM cache
ways. The near threshold tolerant cache way is accessed in the first cycle and only on a
miss are the other cache ways accessed. In this manner the near threshold tolerant cache
way acts as a shield to the other cache ways. If the miss rate in the near threshold tolerant
cache way exceeds a threshold, then the cache is dynamically reconfigured to access all the
cache ways in parallel, providing a single cycle access to all of the cache space. This will
help to almost eliminate any runtime increase in high performance mode. By using this
technique combined with some advanced access policies the RENT cache shows a 53%
reduction in energy over a traditional filter cache. This results in a system that provides a
86% (7.3x) energy savings in low power mode with only an average 2% increase in runtime
while in high performance mode.

The rest of the Chapter is organized as follows. First, Section 3.2 will summarize the
essential points necessary to characterize near threshold tolerant memories. Section 3.3
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(a) Read transistor sizing. (b) Write transistor sizing. (c) Total transistor width.

Fig. 10. Sizing for single-cycle delay.

(a) Read transistor sizing. (b) Write transistor sizing. (c) Total transistor width.

Fig. 11. Sizing for twenty-cycle delay.

to remove the conflict between read and write stability. The
single-ended design droops the power rails, stabilizing write
accesses allowing the bitcell to be sized optimally for read. In
the 8T bitcell, the read path is separate and may be sized up
without impairing write functionality. To meet the write failure
condition, transistors A3/A4, B3/B4, C3/C6 may be sized up.

IV. RESULTS

A. SRAM Bitcell Sizing for Single-cycle Latency

Transistor sizings for iso-robustness operation at a single-
cycle latency constraint are shown in Figures 10a and 10b. As
Vdd is scaled for the differential 6T, the pull down device must
to sized to prevent read upset. This weakens write stability
necessitating access transistor sizing below 500mV. The pull
down device must be sized more aggressively in the single-
ended 6T design since a transmission gate connects the bitcell
with the bitline, increasing the amount of noise injection. The
read devices in the 8T design must be sized to meet the delay
constraint below 600mV. The differential 6T and 8T designs
have the lowest total transistor width above and below 450mV,
respectively, as shown in Figure 10c.

B. SRAM Bitcell Sizing for Twenty-cycle Latency

Twenty-cycle caches can be used for L2 caches or in designs
where memory latency is not as critical as throughput. Since
the differential and single-ended 6T bitcells areas are limited
by read upset and write failures, their transistor sizings are

similar as the delay specification is relaxed, as seen in Figures
11a and 11b. When the delay constraint is relaxed, the read-
out path of the 8T bitcell does not have to be sized. For this
reason the 8T bitcell has the lowest total transistor width below
550mV, as seen in Figure 11c.

C. SRAM Bitcell Area

Using the information on transistor widths, we calculate the
layout area from previous layouts of each SRAM architecture
[4][5][11]. All three bitcells are laid out using logic DRC
rules. The areas are then normalized to the bitcell area of
a minimum-sized commercial differential 6T bitcell. The 8T
bitcell is larger than the differential 6T bitcell for the same
transistor width because of additional contacts. As shown in
Figures 12 and 13, the differential 6T is smallest except for the
twenty-cycle sub-450mV case where the 8T is smallest. For a
single-cycle latency, all bitcells must be sized significantly as
Vdd approaches Vth, making iso-robustness SRAM impracti-
cal. For a twenty-cycle latency at 350mV, the 8T bitcell gives
a 16% reduction in area over the differential 6T design.

D. Energy Impact of Supply Voltage Scaling in SRAM

As was shown in Figure 1, for each circuit there exists a
Vdd where total energy consumption per cycle is minimized
(Vmin). This voltage is highly dependent on the ratio of
dynamic to leakage energy. For caches, Vmin increases as the
size and delay of the cache increase and as associativity, cache

Figure 3.1: SRAM Cell area (measured in total transistor width) at different supply voltages
to maintain ISO-Robustness.

will present the proposed architectural solutions that employ these near threshold tolerant
techniques. Section 3.4 will describe the methodology, and Section 3.5 will present the
results. Then the chapter is finished with a brief discussion of related work in Section 3.6,
and provide concluding remarks in Section 3.7.

3.2 Low Voltage Tolerant SRAM cell design

Supply voltage scaling has been shown to be an effective way to handle lowering the
energy consumption of logic circuits. There have been several cores built that show a
quadratic savings in dynamic energy consumption with a delay degradation [102, 94].
These designs employ CMOS circuitry, which is quite resilient to supply voltage scaling.
SRAM memory cells, on the other hand, do not voltage scale into the near and subthreshold
regions as easily. Several ultra-low energy designs have been implemented [99, 16, 91, 50]
but require increased cell size. This increased cell size reduces the energy gain from supply
voltage scaling, because the larger cells consume more power than the smaller cells. In
addition, when the die size is held constant, the increased cell size reduces the total overall
size of the memory structure. This increased cell size is done in order to maintain reliability
levels, but until recently there was no formal method to guarantee reliable operation in near
threshold memory structures.

By modeling process variation, especially random dopant fluctuations (RDF), and em-
ploying a modified Monte Carlo analysis, Chen et al. showed how to calculate the ro-
bustness of an SRAM cell design at near and subthreshold supply voltages [19]. Because
SRAM cells occur in large arrays, failure rates must be kept very low to ensure a reliable
cache. For example, for 99% of 8kB caches to be reliable it would require a bitcell failure
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rate of 1.57x10−7.
Among other things, the analysis calculates the necessary cell size to maintain the same

failure rate as a standard SRAM cell, termed iso-robustness. In determining the iso-robust
point the transistors are scaled individually to avoid read, write, and read-upset failures.
The technology node for our study is 130nm and standard SRAM cells operate with ac-
ceptable reliably down to 800mV, later results for 90nm, 65nm, and 45nm are presented.
For our robustness analysis cells that operate at supply voltages below 800mV are required
to be sized to match the failure rate of a standard SRAM cell operating at 800mV. A plot of
several different SRAM topologies is shown in Figure 3.1. The graph presents the neces-
sary cell-area in terms of total transistor width to maintain iso-robustness for a given supply
voltage. The three lines in the plot represent a standard 6T SRAM cell, a single-ended 6T
SRAM cell [99] and a 8T SRAM cell [91]. It is possible to not only pick the proper supply
voltage to meet the delay requirements, but to also pick the SRAM topology that provides
the most area efficient solution.

This analysis has several ramifications for the design of a low-power embedded mi-
croprocessor. The SRAM in these systems must be designed for reliable operation. This
analysis can is used to determine what size to make an SRAM cell in order to have it oper-
ate reliably down to a given supply voltage. The increased cell size will affect performance
of a cache in two main ways. First at full supply voltage the SRAM cell will consume
more energy and be slightly slower due to the increased size. Body-biasing techniques can
be employed to regain speed, but at the cost of additional energy consumption. Secondly,
there will be less total cache in the same die space. Given a design frequency to target, it
is critical that proper analysis is performed to avoid oversizing the SRAM cell and reduce
the performance of the chip in non-power saving mode. Conversely it is important not to
undersize the cell and increase reliability problems in power savings mode.

3.3 Energy Efficient Cache Architectures

The ability to voltage and frequency scale cores has provided an order of magnitude
savings in energy [101, 94, 102]. However, supply voltage scaling of the memory sys-
tem has been limited by the tolerance of the SRAM cell. If the SRAM cells discussed in
Section 3.2 are used, in combination with a voltage and frequency scaled core, even more
energy savings could be possible. The goal of the design is to create a chip that can oper-
ate in two distinct modes. The first is a high performance mode where the system is fully
powered and the core runs at a high frequency. The second mode is a power savings mode.
In this mode the chip is frequency scaled to a slower performance target, and the supply
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Figure 3.2: Near threshold filter cache architectures (a) with and (b) without bypass net-
works.

voltage can then be dropped to reduce energy consumption.
Due to the differing activity factors for logic and memory, the core and caches need

to be operated in different voltage domains [26, 100]. In addition, providing two memory
voltage domains will allow more complex architectures that involve both near threshold
tolerant SRAM, and standard SRAM. The near threshold tolerant SRAM will be used to
create energy efficiency, while the standard SRAM will help to provide larger capacity
on chip since they will not need to have their size increased to maintain reliability. This
requires the addition of at most two additional supply voltage domains to the chip and
associated voltage level converters. A diagram of the regions in which a chip might be
partitioned is shown in Figure 3.2(a and b). In the figure, the core is operated in one supply
voltage domain, the filter cache in a separate near threshold tolerant SRAM cell domain,
and the L1 in a third domain. Level converters are used to cross the dotted lines separating
the voltage domains.

These changes to the chip and SRAM cell design provide opportunities to explore more
energy efficient cache hierarchies. Simply using near threshold tolerant cells in place of
current cells will allow the caches in a system to scale to much lower supply voltages,
creating a dynamic energy savings at low frequencies. However the increase in the cell
size will drastically reduce the total amount of cache available when the die size is held
constant. This will negatively impact performance by increasing the number of off-chip
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accesses, which require large amounts of energy and have a long latency. This increase in
latency will in turn slow the completion of the program, and prolong the leakage energy. At
high frequencies, when the cache is operating at full supply voltage the energy per access
of the cache will also be increased due to the larger cell sizes required to meet the iso-
failure conditions set forth in Section 3.2 and will need to be operated at a higher supply
voltage or body bias in order to operate at the same speed. In the following sub-sections
three techniques will be discussed for better use of the near threshold tolerant SRAM cells
to reduce energy consumption.

3.3.1 Near Threshold Filter Cache

Filter caches, a technique proposed in [52, 86], is a method to reduce cache energy.
The idea behind filter caches is to place a small, low energy per access, cache in between
the processor and the L1 cache. This cache then filters access to the larger, more energy
hungry, L1 cache. Employing near threshold tolerant SRAM cells to design a filter cache
would further reduce the energy even more. A diagram of what a near threshold filter cache
architecture would look like is shown in Figure 3.2(a).

The main drawback to using filter caches is that if the memory access pattern creates
a high miss rate in the filter cache, then the overall system energy goes back up due to
the additional miss that causes an access to the L1 cache. The system performance is also
degraded because all cache accesses that miss in the filter cache but hit in the L1 cache
take two cycles instead of one. To overcome these drawbacks a simple bypass network
could be employed to bypass the filter cache when the miss rate in the filter cache is too
high. Figure 3.2(b) provides an illustration of what a bypass filter cache would look like.
This bypass filter cache also presents some drawbacks. First, in order to save energy the
filter cache needs to operate with a writeback policy instead of a writethrough. This means
when the filter cache is bypassed, the entire filter cache must be flushed and written back.
In addition, it is difficult to track when the bypass network should be turned off, since it is
difficult to approximate performance of the filter cache. These two complications prevent
more aggressive dynamic adjustment of the use of the bypass network.

3.3.2 RENT Caches

Although naively employing a near threshold filter cache provides great energy savings,
there are new architectures that can provide even further savings. An additional drawback
of the bypass filter cache design is that when the filter cache is being bypassed, a portion of
the cache space is not being used. That means there is effectively less total cache space on
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Figure 3.3: Cache architecture of the RENT cache.

the chip, leading to a larger number of off-chip accesses. These off-chip accesses require
large amounts of energy and have a long latency. These longer latencies lead to an increase
in runtime for the program, prolonging leakage energy and degrading performance. In
order to minimize the amount of cache space lost and the performance degradation that
occurs from using near threshold tolerant SRAM cells, while still maintaining the energy
efficiency of the filter cache, a new cache architecture is proposed based on the work done
in [42, 73, 2].

The proposed architecture is called the Reconfigurable Energy-efficient Near Threshold
(RENT) cache. A diagram of the cache structure is presented in Figure 3.3. The basic
premise behind the cache is as follows: There is one way of the cache and tags that is
implemented with near threshold tolerant SRAM cells. The other ways of the cache and
tags are implemented with standard SRAM cells. The cache will be operated in two distinct
modes. We call these modes conventional and filtered. In the conventional mode the cache
is accessed in the regular manner. That is, the index portion of the address reads out all
the cache tags and data from each way in parallel. The tags are then matched with the
incoming address and the appropriate way of the cache is enabled to the output data bus.
The new mode of operation, filtered mode, is designed to act like a filter cache. When
filtered mode is in use only the first way, the near threshold tolerant way, of the cache and
tags are accessed on the first cycle, via the enable 1 signal. If there is a hit, the cache will
return the data and energy will be saved by only accessing this one way of the cache. If
there is a miss on this first cycle access, then the data from the near threshold tolerant way
is stored in a swap buffer. The enable 2 signal is then used and the rest of the cache is
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Figure 3.4: RENT cache access policy flow charts for (a) conventional mode and (b) filtered
mode.

checked for a hit. When a hit is found it is both enabled onto the data bus and written to
the near threshold tolerant way. On a subsequent cycle the data stored in the swap buffer
is then written into the cache way where the hit occurred. This action essentially swaps
the value in the near threshold tolerant way and the way in which there was a hit. This
ensures that the most recently used (MRU) block is in the near threshold tolerant cache
way. This swapping action is similar to the writeback buffer in the filter cache, and the
design is no more complicated than creating an exclusive filter cache. Figure 3.4 shows a
flowchart of the two access modes. This addresses two of the drawbacks of the bypass filter
cache. First, it utilises the low voltage tolerant SRAM cells, even when in high performance
mode leading to more on-chip cache. Second, it prevents the flushing action required when
switching modes, since the data in the cache ways is still available in high performance
mode, unlike the filter cache when it is bypassed. It does however present to tradeoffs.
First, the near-threshold tolerant cache ways will consume more energy at full voltage
because they are larger with more capacitance and need to be operated with body-biasing
to achieve the same speed. Second, the swap mechanism requires an additional cycle to
complete some cache accesses, prolonging execution time in filtered mode.

Changing from conventional mode to filtered mode could be identified explicitly by
the programmer, but greater savings could be achieved if the cache was allowed to choose
operating modes dynamically based on performance. This would allow the cache to adapt
to different program phases. It is relatively easy to decide when to switch from filtered
mode to conventional mode. A counter can be used to monitor the hit rate of the near
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threshold tolerant way, when the hit rate drops below a predefined threshold the cache
changes modes. It is harder to decide when to transition back to the filtered mode of
operation. In order to determine when to switch, we make use of some information from the
replacement policy. If the cache is using a pseudo least recently used (LRU) replacement
policy than the MRU block can be easily determined. This is due to the fact that the
pseudo-LRU policy always identifies the MRU block in the cache tags. If the system tracks
the number of times the cache hits on an MRU block and compare it to the number of times
the cache hits on any non-MRU block the system can calculate what the miss rate would
have been for the near threshold tolerant cache way. This follows because the MRU block
would be in the near threshold tolerant cache way in filtered mode. When this hit rate
exceeds some threshold, the system can switch back to filtered operation. In both cases,
after a switch has occurred a suitable number of accesses must be completed to allow the
cache to reach a steady state before changing modes again. These methods require a very
small overhead of two counters to track accesses and MRU/filter hits. This addresses the
final drawback of the bypass filter cache, by allowing more aggressive mode transitions due
to the ability to accurately track filter cache performance in both modes of operation.

3.3.3 Alternative RENT Caches

Further possible improvements can be made to the RENT cache to reduce energy con-
sumption. Notice that in filtered mode the system access the additional ways of the cache

30



in the second cycle. If instead the system had used the first cycle to check not only the
first set of tags, but all the other cache tags in the set as well, the system could know by
the second cycle the way in which the data we seek resides. The modified architecture is
presented in Figure 3.5. In this case the system makes all the tags using near threshold
tolerant SRAM cells and accesses them all on the first cycle. In parallel with the tag check
the system accesses the near threshold tolerant way of the data cache. If there is a hit in the
near threshold tolerant way the data can be provided in a single cycle, as before. If there is
a miss, the tag check will provide which conventional way of the cache the system should
access on the second cycle. This reduces the energy consumed because on the second cycle
only one way of the conventional cache is accessed. The flip-flops shown in Figure 3.5 are
used to delay the enable of the conventional ways until the next cycle. There is also the
added benefit of knowing if the cache will miss after the first cycle. In this case an access
to the next level of memory can be initiated one cycle earlier, reducing the off-chip access
time by one cycle. Of course the system is trading off the energy reduction of accessing
all the additional ways of the cache with the increase in energy for the tag look up. If the
conventional ways of the cache are rarely accessed then the system may consume more
energy with this design.

3.4 Methodology

A system with two different operating modes was created. The first was a 400 MHz
full power mode. The frequency was determined by the ARM9 CPU model used for energy
analysis, the details of which were obtained from consultation with the chip designers. The
second mode, a low power mode, was chosen to operate at a 10 MHz clock frequency. This
operating frequency was picked to provide a significant energy savings while still being fast
enough to handle a wide range of simpler applications. A summary of the resultant design
parameters for the system is in Table 3.1. For this study a system with a split instruction
and data cache is used, but to keep the analysis space small the same sizes and types of
caches for both the instruction and data memory hierarchies is used. For all comparisons
the die size was held constant.

3.4.1 Simulation Environment

For simulation a modified version of the M5 simulator [9] is used. The simulator was
modified to incorporate the dynamic and leakage energy modeling necessary to determine
the energy of the overall system.
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Simulation Parameters
Traditional Near Threshold

Baseline Filter Cache Filter Cache
10Mhz 400M 10MHz 400M 10MHz 400M

Core Voltage 450mV 1.2V 450mV 1.2V 450mV 1.2V
Filter Cache Voltage N/A 800mV 1.2V* 500mV 1.2V*
Filter Cache Size N/A 1 kB 512 B
L1 Cache Voltage 800mV 1.1V 800mV 1.1V 800mV 1.1V
L1 Cache Size 8 kB 7 kB 7 kB
L1 Cache Ways 8 7 7

Table 3.1: Simulated System Parameters. *Body-Biasing used to meet timing constraints.

3.4.2 Benchmarks

For the simulation the MiBench benchmarks [32] were used. These benchmarks are
small embedded system benchmarks and represent a range of applications, from automotive
to encryption. A subset of benchmarks that compiled to the target architecture were run to
completion for all test cases using the reduced input sets. Further analysis was done using
the complete SpecInt 2000 benchmarks [36]. This analysis shows similar results as the
MiBench studies and is briefly presented at the end of the results section.

3.4.3 Energy Models

We create accurate energy consumption models for the system using SPICE analysis
coupled with iso-robustness analysis. The analysis accounts for CPU, cache, bus, level
converter, and off-chip access energy. All data presented is using a commercial 130nm
process, some additional analysis was done to verify that the trends still hold in both 90nm,
65nm, and 45nm. The results of that comparison are presented in Section 3.5.6.

3.4.3.1 Cache Model

We use the iso-robustness analysis method discussed in Section 2, assuming that stan-
dard SRAM cells can operate reliably down to 800mV, to determine the appropriate cell
size to meet the delay of the core and iso-robustness reliability constraint for any near
threshold SRAM cells. SPICE modeling is used on the SRAM cell to determine the dy-
namic and leakage energy consumption of the cell at different operating points. The energy
in the data and tag arrays of the cache as well as any decoders associated with the cache
are accounted. However the cache controller energy is not modeled. This will result in
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energy figures being slightly lower than that of a real system. The analysis has simulated
and accounted for the energy and additional cycle latency of the swap buffer. The use of
body-bias techniques is assumed in our experiments to reduce the cache leakage energy, or
to meet timing constraints.

3.4.3.2 CPU Model

For the CPU model, the analysis bases the core energy consumption numbers from a
cacheless 400MHz ARM9 core. SPICE simulation of some representative smaller CMOS
circuitry is used in order to determine the impact of voltage and frequency scaling on the
core for both dynamic and leakage energy.

3.4.3.3 Off-Chip Energy

The off-chip latency was derived for a memory system composed of SRAM for data,
and ROM for instructions. This is a typical setup for an embedded system, and the la-
tency was 20 cycles at 400 MHz. The energy consumed in the package and a reasonable
amount of off-chip routing is accounted for in all the measurements. However, the en-
ergy of the off-chip memory itself is not accounted for in the simulation as this could vary
widely depending on the application. A designer could use our figures as part of their total
power/performance calculations.

3.5 Results

3.5.1 Filter Cache

The first analysis to be performed was on the simple near threshold filter cache. The
first step was to determine the L1 size for the baseline system without a filter cache that
provided the lowest energy solution. A sweep of L1 sizes and associativities yielded an
optimal size of an 8kB, 8-way cache for the MiBench benchmarks. Then, while holding
the die size constant the lowest energy system with a near threshold filter cache size was
determined. The analysis was done keeping in mind that the size of the near threshold filter
cache SRAM cells would be larger in size than the standard ones used in the L1 cache.
Across the benchmarks the optimal size was a filter cache of either 512 B or 1 kB. For
our studies a 512 B filter cache and a 7kB, 7-way L1 cache are chosen. For comparison
a filter cache designed with standard SRAM cells, which do not support voltage scaling
below 800mV, is also evaluated. This configuration is termed as a traditional filter cache.
For this case a configuration of a 1 kB filter cache and a 7kB, 7-way L1 cache is chosen. A
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larger filter cache is possible in this case because the SRAM cells do not have to be sized to
operate at lower supply voltages. A summary of the baseline and filter cache systems can be
found in Table 3.1. For the initial results the bypass method described in Section 3.3.1 is not
used, the impact of using a bypass on the filter cache will be evaluated in Section 3.5.1.2.
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Figure 3.6: Filter cache energy breakdown for BitCount benchmark.

3.5.1.1 Without Bypass

The results of the analysis are presented in Figure 3.6. In the figure there are 6 bars,
the first 3 bars are for the system at 400 MHz and the second 3 are for the system at 10
MHz. The bars present the total energy of the system divided by the number of instructions
completed. To illustrate the analysis the BitCount benchmark is used. The first thing to
note is that by simply using voltage scaling on the baseline system it can reduce the energy
consumption to complete this benchmark by 60% (3rd bar vs. 6th bar). It can also be
seen that, because the system is able to more aggressively voltage scale the core, the cache
quickly becomes the dominant energy source at low frequencies. From the figure it can be
seen that the IL1 consumes most of the energy in the memory system for BitCount. Using a
filter cache dramatically reduces this IL1 dynamic energy by shielding the IL1 with a small
filter cache. This results in a 73% (2nd and 3rd bars) reduction in energy at 400MHz and a
82% reduction in energy at 10 MHz (5th and 6th bars) over their equivalent speed baseline
counterparts.

Figure 3.7 presents a zoomed in portion of Figure 3.6 to help better see the shorter
bars. The addition of near threshold supply voltage scaling capabilities on the filter cache
does two things. First, it reduces the energy consumption at 10 MHz a further 45% over
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Figure 3.7: Filter cache energy for BitCount benchmark (Zoomed In).

the traditional filter cache. Second, due to the larger cell sizes, the energy at 400 MHz
is increased by around 1%. This increase is mitigated by the fact that although the near
threshold filter cache has larger cell sizes, there are only half as many cells as the traditional
filter cache (see Table 3.1).

Figure 3.8 shows additional benchmarks from the MiBench suite and the performance
of the near threshold filter cache. Figure 3.9 shows how the near threshold filter cache’s
energy consumption compares to the traditional filter cache and the baseline at 10 MHz.
On average the near threshold voltage scaled filter cache shows an 84% reduction in energy
over the baseline at 10 MHz, and a 36% reduction over a traditional filter cache.

3.5.1.2 With Bypass

The filter cache does present some drawbacks. As mentioned in Section 3.3.1 the ex-
istence of the filter cache can degrade performance when the miss rate in the filter cache
is high. Figure 3.10 presents the increase in runtime that occurs over the baseline system
when a filter cache is used. Note that for this analysis a filter cache size of 1kB and a 6kB,
6-way L1 is used to compare to equal die size RENT caches in Section 3.5.2. On average
a 17% increase in runtime occurs with a standard deviation of 9%. The worst case was
a 29% increase in runtime for the Patricia benchmark. In order to reduce the runtime in-
crease a bypass network can be employed which is enabled when the miss rate is high. The
operation of the bypass filter cache is described in Section 3.3.1. Figure 3.10 also shows
the resultant runtime when the bypass network is used. Notice that now the average run-
time increase is only 3.3% with a 5.6% standard deviation. The benchmarks that still have

35



Bit Count

Basic Math

CJPEG

Dijkstra

DJPEG

FFT

Patricia

QSort

Sha

String Search

Susan

Average

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75
Energy (pJ/Inst)

 Core         
 Off Chip    
 DL1 Dynamic
 DL1 Leakage  
 DL0 Dynamic
 DL0 Leakage
 IL1 Dynamic
 IL1 Leakage
 IL0 Dynamic
 IL0 Leakage

Figure 3.8: NT filter cache energy break-
downs for all Benchmarks at
10MHz.

B
it 

C
o

u
n

t

B
as

ic
 M

at
h

C
JP

E
G

D
ijk

st
ra

D
JP

E
G

FF
T

P
at

ric
ia

Q
S

o
rt

S
ha

S
tr

in
g 

S
ea

rc
h

S
us

an

 

A
ve

ra
ge

0.00

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

No
rm

ali
ze

d E
ne

rg
y C

on
su

mp
tio

n 
at 

10
MH

z t
o B

as
eli

ne

Benchmark

 Traditional Filter Cache
 Near Threshold Filter Cache / Basic RENT Cache
 Alternative RENT Cache

Figure 3.9: Cache energy comparisons for
all benchmarks normalized to the
baseline at 10MHz.

36



Bit Count
Basic Math

CJPEG
Dijkstra
DJPEG

FFT
Patricia

QSort
Sha

String Search
Susan

 
Average

0.9 1.0 1.1 1.2 1.3 1.4
Normalized Run Time @ 400MHz to Baseline

Be
nc

hm
ar

k

 Filter Cache - 6kB L1, 1kB Filter
 Filter Cache - 6kB L1, Bypass Filter
 RENT Cache - 6kB Conventional, 1kB Nearthreshold

Figure 3.10: Normalized runtimes at full voltage to baseline machine.

a significant increase in runtime happen as a result of having a working set that is larger
than the L1 cache. This leads to additional off-chip accesses which are long latency. Those
benchmarks would benefit from being able to utilize the cache space that is being disabled
by the bypass network.

3.5.2 RENT Cache

Using the RENT cache the system is able to increase the cache capacity on chip when
running in the conventional mode. The simulation configuration is slightly different be-
cause all ways in the cache should be the same size. The resultant cache sizes are presented
in Table 3.2, notice that the near threshold tolerant cache way requires about the same space
as two conventional cache ways and the total cache size is decreased. This is better than
the bypass cache because it allows the benchmark to utilize more of the cache on chip in
conventional mode, 7kB. In addition the cache is also able to adapt dynamically to differ-
ent phases of program behavior. The third bar in Figure 3.10 shows that with the use of
the RENT cache the system can reduce the runtime overhead even further. The average
increase is now just 2.1% on average with a 4.4% standard deviation. The use of the RENT
cache has also kept the energy consumption at the same level in the low power mode as the
bypass filter cache.
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Baseline RENT Cache
# of Near Threshold Cache 1kB Ways 0 1
# of Conventional Cache 1kB Ways 8 6

Table 3.2: Simulated System Parameters for RENT Cache
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Figure 3.12: Energy breakdowns for the GZIP benchmark.

3.5.3 Alternative RENT Cache

Using the alternative RENT cache the energy savings can be even greater. The die size
is slightly larger to accommodate the near threshold tags, but was not significant enough
to justify the removal of another full data cache way. In Figure 3.11(a) the basic and
alternative version of the RENT cache are compared across the MiBench benchmarks.
For almost all the cases there is a decrease in total energy. A blown-up detailed view of
the Patricia benchmark is presented in Figure 3.11(c). It clearly shows a reduction in the
energy of the conventional ways of the cache. The dynamic energy to the near threshold
portion of the cache is increased due to the additional tag checks being done. In this case
the decrease in the conventional access energy outweighed the increase in the tags and the
alternative method was better. Figure 3.11(b) presents a case in which the basic RENT
cache outperforms the alternative version, the BitCount benchmark. In this case there was
already very little conventional way dynamic energy and the increase in the filter way
dynamic energy from the additional tag accesses was too large for the alternative method
to be more energy efficient. Note that in all cases there is a slight reduction in runtime
and therefore a small reduction in the leakage energy for all the alternative RENT cache
methods. This reduction in runtime comes from being able to issue off-chip requests after
the first cycle instead of the second cycle, thus reducing the total runtime by one cycle
per off-chip access. It is hard to see this decrease in the graph, but the data confirms this
expected result. From Figure 3.9, on average the alternative RENT cache policy provides
an additional 27% average energy reduction over the basic RENT cache, 54% over the
traditional filter cache, and an 88% over the baseline at 10MHz.
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3.5.4 Spec2000 Analysis

Analysis was also done using the SPECINT benchmarks. Figure 3.12 shows the en-
ergy breakdown of the GZIP benchmark for the traditional and near threshold filter caches.
Notice that even for these larger benchmarks the system is still seeing a 34% reduction
in energy using the near threshold SRAM cells. Figure 3.13 and Figure 3.14 show the
energy breakdowns of the 10MHz basic and alternative RENT caches. The system still
show significant energy reductions using the alternative policy for the SpecInt benchmarks.
Overall the system sees a 57% reduction on average using the alternative RENT cache over
a traditional filter cache at 10MHz.

3.5.5 Power Savings Mode

The power savings figures are calculated by taking the energy consumption of the alter-
native rent cache in the low power mode, 10MHz, and comparing that to the high perfor-
mance mode, 400MHz. For the MiBench benchmarks on average the system shows an 86%
(7.3x) reduction in energy when operating in low power mode, with only a 2% increase in
runtime in high performance mode. For the SpecInt benchmarks the system shows on av-
erage a 77% (4.4x) reduction in energy in low power mode with only an average 4.8%
increase in runtime while in the high performance mode.

3.5.6 Technology Node Comparison

Additionally it was verified that the trends still hold in smaller technology nodes. Fig-
ure 3.15 shows the average MIBench performance at different technology nodes for both
the RENT and alternative RENT cache. The bars are normalized to the performance of
the baseline in the low power mode at the same technology node (i.e. 45nm RENT cache
is normalized to 45nm Baseline). From the graphs you can see that the systems are still
seeing a 88-90% reduction in cache energy for the basic RENT cache across all nodes. The
breakdown of where the energy goes shifts to leakage at smaller nodes, but the same overall
trends hold.

Each technology node has a different optimal operating voltage and frequency for both
the low power mode and the high performance mode, for brevity they are not presented
here.
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Figure 3.13: Energy breakdown for SpecInt 2000 benchmarks with the basic RENT cache
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3.5.7 Additional Analysis

A number of additional experiments were run, but for brevity the results are not pre-
sented here. These experiments included sensitivity analysis for the off-chip latency and
energy consumption numbers. Eventually, if the off-chip energy becomes very large, fo-
cusing on the core and cache is less important. Such systems will require a corresponding
research effort to reduce main memory power, but off-chip energy savings is left to future
research. Additional analysis also included threshold voltage techniques to decrease leak-
age energy as well as drowsy cache techniques [49]. The results presented in this chapter
utilize the body bias techniques and without body-bias techniques, the configurations con-
sumed anywhere from 5-12% more energy. The drowsy cache analysis also showed further
energy savings of around 4% depending on the policy used. Analysis was also done for
a 1MHz low power target, where the core was scaled to 300mV, but in that case the leak-
age energy of the caches began to dominate and only provided marginal savings over the
10MHz system. This was the subthreshold region mentioned in Section 3.1.

3.6 Related Work

There has been a significant amount of work done in the area of energy efficient cache
architectures, particularly for embedded applications. Our work differs from the previous
work in that we specifically use a near threshold tolerant SRAM design to explore cache
architectures that can scale into the near threshold operating region. This results in sig-
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nificant energy savings of 36% over a traditional filter cache. The original work on filter
caches was presented by Kin et al. [52] and Tang et al. [86] expanded on that work by
creating a prediction network that would allow the instruction filter cache to be bypassed.

Further work in the reduction of cache energy was done by Albonesi [2]. That work
proposes a cache that reconfigures itself to be optimal in size. This is achieved by enabling
and disabling ways of the cache. This work is orthogonal to the work presented in this
chapter, and could be used to further improve energy performance by disabling cache ways
for applications with small working sets. Inoue et al. investigated the idea of way prediction
[42] and Powell et al. [73] expanded on it. In their work only the predicted way is accessed
on the first cycle, after which the other ways are accessed. This is similar to the RENT
cache in that RENT is only accessing one way of the cache on the first cycle. This chapters
work differs because it always starts with the near threshold tolerant way of the cache and
swap the MRU block into that way of the cache. This helps to leverage the low energy
of accessing this way of the cache. Zhang [103] proposes a multi-column cache to reduce
energy, this work expands on the idea of way-prediction focused mainly on the MRU way
of the cache. Zhang performs swapping of the MRU block into the next predicted way,
although this is not guaranteed to be the first way. Thus, preventing it from being used
with the near-threshold SRAM cells. Zhu’s [105] work most closely resembles our work in
that it focuses on alternating access patterns to the cache based on performance to achieve
energy optimality. However Zhu’s work builds on that of Zhang and again because the
predicted way is not always in the same place near-threshold techniques do not work. And
lastly, Zheng [104] proposes a cache that uses way concatenation to help reconfigure the
cache into the optimal energy configuration.

In addition there have been several studies investigating the trade-offs of swapping
cache locations. Batson [7] did an investigation of such techniques and found the energy
performed from swapping outweighed the gains of hitting on a prediction. However this
pertained to standard SRAM cells, if the energy savings of the prediction is increased us-
ing near-threshold SRAM, this trade-off favors the use of swapping as was shown by our
results.

Additional work was done looking at caches with cache ways of different latencies.
Fujii [29] and Balasurbramonian[6] both look at techniques where low energy cache ways
are used and operated at slower speeds. And faster, high energy cache ways are accessed
first or by hot addresses streams. Their focus is on much larger caches and the reduction
of leakage energy. Their work differs in that they focus on using low energy cache ways
second after the access to the high energy way or place hot, frequent accesses in the high
energy way and cold, infrequent accesses in the low energy way. Whereas RENT cache
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performs the lookup in the opposite order.
There has also been a large number of studies on subthreshold and near-threshold

systems[100, 102, 94, 26]. These studies, however, focus on small performance targets
or chip multiprocessing, unlike our system which targets a single general purpose core that
can operate in both low power mode and high performance mode. There has also been
substantial work on subthreshold and near threshold SRAM design [99, 16, 91, 50], but
none of these considers potential cache architectures for embedded applications, or prop-
erly address yield and robustness constraints.

3.7 Conclusion

Embedded processors, particularly for mobile applications, are requiring ever increas-
ing performance but still have battery lifetime and area as a critical design parameters. In
this chapter an embedded processor with a high performance mode to handle time sensi-
tive and compute intensive work, and a low power mode which can complete non-critical
tasks in an energy efficient manner is presented. To achieve this a near threshold tolerant
memory structures coupled with voltage and frequency scaling is investigated.

This chapter proposes the RENT cache to provide both a significant reduction in energy
in low power mode and a minimal increase in runtime in high performance mode. The
cache is designed with one near threshold voltage tolerant cache way to filter accesses to
the rest of the cache. This cache way is accessed first, and only on a miss are the other
cache ways accessed. If the miss rate in the near threshold cache way becomes to large
and degrades performance the cache is dynamically reconfigured to act like a conventional
cache, where all the cache ways are accessed in parallel. This changes the cache to have a
uniform, single cycle hit latency. Using this technique we show a 53% reduction in energy
over a traditional filter cache. This leads to a system that provides a 86% (7.3x) reduction
in energy while in low power mode with only a 2% increase in runtime in high performance
mode.
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CHAPTER 4

Multi-Core Architectures

This chapter presents the use of NTC operation to target parallelizable embedded ap-
plications requiring higher performance, but where battery life is important. In particular
this chapter shows that logic and memory cells have different optimal supply and thresh-
old voltages, and therefore proposes to allow the cores and memory to operate in different
voltage regions. With the memory operating at a different voltage, this chapter then ex-
plores the design space in which several slower cores clustered together share a faster L1
cache. Results show that an architecture such as this is optimal for energy efficiency. In par-
ticular, SPLASH2 benchmarks show a 53% energy reduction over the conventional CMP
approach (70% energy reduction over a single core machine). In addition this chapter ex-
plores the design trade-offs that occur in systems with a separate instruction and data cache.
Results show that some applications prefer the data cache to be clustered while the instruc-
tion cache is kept private to the core allowing further energy savings of a 77% reduction
over a single core machine. The work in this chapter was completed with the collabora-
tion of my colleague Bo Zhai. Some of this chapter appeared in both an article presented
at the 16th International Conference on Parallel Architecture and Compilation Techniques
(PACT’07) [26] and an article presented at the 13th ACM/IEEE International Symposium
on Low Power Electronic Design (ISLPED) [100].

4.1 Introduction

Previous work by Zhai et al. [98] and Calhoun [15] has shown that for a CMOS digital
circuit there exists an energy optimal supply voltage (Vmin) below which energy consump-
tion increases because of exponentially increased propagation delay and leakage energy.
Vmin usually occurs in the subthreshold region. However, these papers did not address how
to choose the threshold voltage (Vth) to further improve energy savings. Zhai et al. [100]
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showed that by properly controlling Vth to reach the energy optimal voltage a greater sav-
ings can be achieved. In this chapter that work is extended to investigate, in detail, archi-
tectural choices that can be used to exploit this property.

Zhai et al. [102] shows that, due to the different activity factors and leakage rates for
memory cells and logic, the Vmin of the processor and memory are usually different. As a
result, operating the entire system under a single Vdd leads to sub-optimal energy efficiency.
Therefore in this chapter the use of a chip design that has two separate Vdd/Vth domains
for the core and memory is proposed.

However only changing the Vth does not solve the issue of performance loss from
aggressive voltage scaling. So in addition, this chapter proposes to employ multiple cores in
the near threshold regime, where the best performance for energy trade-off is encountered.
This chapter further explores separate control of Vdd and Vth for the core and the memory,
where memory is allowed to operate at speeds both slower and faster than the core it is
attached to. In particular, a cluster that has several slower cores connected to the same
faster cache is presented.

Clusters have advantages compared to the conventional CMP approach. Applications
that have high communication to computation ratios can share data with other cores in the
cluster without the coherence overhead of communicating over the bus that connects the
different L1’s. However, the cores are now contending for the same cache space, which
may result in effectively smaller cache sizes due to conflict and capacity misses generated
by the other cores within the cluster. L1 sharing also requires a bus between the cores and
the L1. Having more cores within a cluster increases the size and capacitance of this bus.
This chapter investigates all the major factors that could affect the system energy efficiency,
such as L1 cache size, the cluster size, total number of clusters and the selection of Vdd and
Vth within a cluster. Architectural simulation together with circuit-level modeling shows
that for most of the SPLASH2 [96] benchmarks the energy optimal point is 2 cores in a
cluster. This configuration provides about a 53% increase in energy efficiency over the
conventional CMP design.

In addition the possibility of separately clustering the instruction and data caches the
impact this has on different applications is explored. Simulations show that due to the low
miss rate and high access rate of the instruction cache, further energy savings can be found
by keeping small private instruction caches for each core and a clustered data cache. Using
this technique a system can increase energy efficiency further to about a 59% reduction
over the conventional CMP design.

This chapter is organized as follows: In Section 4.2 the proposed architecture is intro-
duced. Section 4.3 lays out benchmark selection for evaluation of the architecture. Then
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Section 4.4 details the energy modeling of a complete system and Section 4.5 details the
architectural simulation results of the SPLASH2 benchmarks. In Section 4.6 the impact of
splitting the L1 cache into instruction and data caches and hit under miss policies is pre-
sented. Finally, Section 4.7 and Section 4.8 present related work and concluding remarks.
All technology numbers for this Chapter are drawn from an industrial 0.13um CMOS tech-
nology.

4.2 Proposed Near Threshold Architecture

This section explores the unique architectural opportunities of clustering cores to a
single cache that is afforded by NTC operation.

4.2.1 New Memory Architecture

Traditional computer design is usually limited by the SRAM/cache speed leading to
conventional designs in which the caches run at the same speed or slower speeds than the
core. However, the picture changes in the near threshold domain because a system can now
take advantage of the Vdd and Vth knobs, as discussed in Section 2, and have the memory
module operate at a speed faster than the core. In the subthreshold regime, a 100mV boost
in Vdd from 300mV to 400mV can bring almost 10X performance speedup according to
silicon measurements in [102]. The Vth can be similarly tuned to adjust speed. However,
this is not feasible in the superthreshold regime because driving current depends on Vdd/Vth

following the a-power law [76].
Further investigation is performed on the use of multiprocessing techniques in conjunc-

tion with voltage scaling techniques to reduce energy consumption. The conventional way
that multiprocessing is implemented is illustrated in Figure 4.1(a) where there is one cache
per core. In this Chapter a new micro-architecture shown in Figure 4.1(b) is proposed,
where there are several cores sharing one local cache forming a ”cluster”. The local cache
serves k cores by running k times faster than each individual core. This is achieved by
assigning proper Vdd and Vth to the cores and the SRAM/caches. To simplify the problem,
it is assumed that all the cores are running at the same speed and same Vdd and Vth. But
the Vdd/Vth between the cores and the SRAM/cache could be different. The clusters are
connected to the same next level memory, which could be an on-chip cache or an off-chip
DRAM.

Because the cores and the memories could potentially operate at different supply volt-
ages, level converters will be needed in between the cores and memories. Subthreshold
level converters have been shown feasible in [102]. Considering the Vdd space being ex-
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Figure 4.1: Conventional (a) and proposed (b) multi-processor architectures.

plored, the delay of the level converter is minimal compared to the critical delay of the core
and the memory. In addition, since multiple cores are connected to a single L1, the tightly
coupled nature of the L1 will be removed and a bus will be needed to connect the cores
and the cache. This bus will become larger and expend more energy as the number of cores
within the cluster is increased.

4.2.2 Architectural Trade-offs

This proposed architecture takes advantage of several different trade-offs within the
design. The next few sub sections break down each of the architectural parameters that are
able to be varied and describes the trade-offs being made. Each of the different trade-offs
yield an optimal energy point for a given benchmark. In Section 6 a complete analysis of
the parameters and their interactions for several different benchmarks to find the energy
optimal point for each is performed.

4.2.2.1 L1 Cache Size

The size of the L1 is an important factor in controlling the overall system energy. Tra-
ditionally a system prefers a larger L1 cache because it results in more hits and therefore a
shorter average memory access time. When considering energy consumption, this shorter
average access time means that the CPU itself can complete the work in fewer total cycles.
Since it takes fewer total cycles the system can slow down and still meet the timing deadline
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with less energy expended. In addition the higher hit rate also means fewer accesses to the
L2. Since the L2 is running at nominal voltage it has a high energy cost per access. Having
fewer accesses results in less energy and greater opportunity for the L2 to take advantage
of techniques like drowsy caches [49].

On the other hand increasing the size of the L1 also increases the energy per access.
This happens because the tag lookup requires a larger structure, and the busses that run
through the cache become larger with more capacitance. A muxed based memory is used to
reduce the increase in access energy by banking memory to reduce the size of the internal
buses. This adds complexity to the cache because muxes are inserted, but it reduces the
energy increase compared to a single large cache bank. Even though these techniques are
used to limit the increase in energy, there is still additional energy consumed per access.
This additional energy per access will result in more energy being consumed for larger
caches.

The trade-off here is really to balance the L1 access energy with both the decrease in L2
energy and the faster completion time. This parameter is highly dependent on the access
pattern and data set size of the application. Applications with small working sets tend to
prefer smaller caches because there tends to be fewer L1 misses with smaller working sets.

4.2.2.2 Cluster Size

The size of the cluster is also an important factor, and highly depends on the bench-
mark. The biggest benefit of increasing the cluster size can occur in applications with high
communication to computation ratios. Clustering the CPUs together allows cores within
a cluster to communicate through shared memory without having to traverse the bus con-
necting the L1’s. As the number of cores in a cluster is increased a given core can reach
more cores in a single cycle. The other benefit is similar if the cores are sharing data. The
sharing pattern doesn’t matter as much as the amount of shared data. Similar to the commu-
nication latency being shorter, data can be shared between cores within a cluster without
the overhead of the coherence protocol. This way if a block was being ping-ponged be-
tween two cores, by putting them in the same cluster the system lowers the average access
latency. This decrease in both the average communication latency and shared memory la-
tency results in lower power in two main ways. First the average number of cycles required
to complete the program is lower, and thus the cpu and system can be clocked at a slower
rate and lower voltage and still meet the required execution time. This will result in lower
overall energy consumption. Second the number of Snooping access that occur to other
L1’s is decreased. This means fewer tag lookups in all the L1 caches as well as the snoop
request on the bus between the L1’s.
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On the other hand, as the number of cores in a cluster is increased the cores begin to
contend for the same cache resources. This will result in more conflict and capacity misses
unless the size and/or associativity of the cache size is increased. The trade-offs of an in-
creased cache can be found in Section 3.2.1. Given a fixed cache size, the increased number
cores will generate more L2 accesses, which are costly in terms of energy because the L2
is operating at a higher voltage. In addition the cache must be clocked at a higher rate to
satisfy the requests. This higher frequency will result in the cache needing a higher volt-
age, thus increasing the energy required per access. Also, as the number of cores increases
within the cluster they cores must be physically connected with a bus. Traditionally the L1
cache can be tightly coupled with the core creating a fast interface with low capacitance.
With a clustered architecture a bus will need to be added to connect the cores. This bus
will slow memory accesses, and the capacitance will increase with the number of cores.
Driving that larger capacitance will result in increased energy consumption.

The trade-off here is the speeding up that occurs due to the sharing between cores
at the cost of increasing cache contention, access energy, and bus size. This is highly
dependent on the application. For example an application that has a high communication
to computation ratio and a large amount of shared data that is frequently accessed by many
cores will prefer a large cluster size. While independent workloads (several independent
threads) that have little to no communication or shared data will prefer smaller cluster sizes.

4.2.2.3 Number of Clusters

The number of clusters in a system can also be classified as the number of cores in the
system when the cluster size is held constant. The benefit of having more clusters is that
more parallelism can be exposed. This increased parallelism means that the task can be
divided among more cores and each of the cores can be clocked at a slower frequency and
lower voltage. The lower voltage and frequency will lead to energy savings.

On the other hand with increased parallelism more communication overhead is intro-
duced between the cores and additional code to parallelize the application is required. This
overhead results in slightly larger instruction counts and more communication across the
snooping bus. In addition Amdahl’s law applies to the amount of parallelism we will be
able to extract in comparison to the inherently serial portion of the code. This of course
means that the number of clusters is also dependent on the application that is being run in
terms of the amount of parallelism that can be extracted and the amount of code overhead
and communication that occurs when the application is parallelized.
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4.3 Benchmarks for Evaluating the Design

For our analysis we have chosen to use the SPLASH2 benchmark suite [96]. These
benchmarks represent several different forms of parallel applications. Although we are
targeting less computationally intensive workloads, i.e. MPEG decoding, we feel that the
SPLASH2 benchmarks offer a wide variety of parallel execution models. The important
factors to consider for any application are the amount of parallelism that is present in the
application, the data set sizes, the communication to computation ratios, and the amount
of data sharing that occurs. These factors play the most important role in the performance
of the machine. We used the smaller SPLASH2 input sets for faster simulation time and
to represent the smaller nature of the problems that we are targeting. The applications
we chose to run were Cholesky (cho), FFT, FMM, LU non-contiguous blocks (lun), LU-
contiguous blocks (luc), Radix (rad), and Raytrace (ray).

Although these applications are not exactly what we are targeting, we can use them to
determine if clustering is beneficial and determine the performance range at which we get
the best energy efficiency.

4.4 Simulation Methodology

Our simulation was done with the M5 simulator [9]. It was modified to allow clustering
support of the L1 caches. To provide the ability for multiple cores to access the cache in
the same cycle, the cache is operated at a higher frequency and the cores within the cluster
are run in different phases of the cache clock. For example if there were 4 cores per cluster
the cache would be clocked 4X the speed of the cores. The first core would have a rising
edge of it’s clock on the 1st, 5th, 9th,... clock edge of the cache. The second core would
have a rising edge on the 2nd, 6th, 10th,... clock edge of the cache and so forth. This means
that each core will see a single cpu cycle latency to the L1 without the need for an arbiter
on the bus, or multiple ports to the cache.

4.4.1 Power Models

In order to properly attain energy numbers from our architectural simulation, we needed
to determine a power model for all the components in the system. The following subsec-
tions will describe how we arrived at the model for each component in the system.
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4.4.1.1 Core and L1

The core energy estimations are based upon the processor core frequency and power
consumption numbers from ARM946 in [3]. Then we used the same fitted model as in
Section 2 to capture the Vdd and Vth dependency of delay and leakage. The processor
without caches consumes 86mW while running at 233MHz with a nominal Vdd of 1.2V.
The cache power/energy numbers of different sizes were extrapolated from a memory com-
piler in 0.13um technology. The baseline machine is assumed to have the parameters in
Table 4.1. 64kB of unified data and instruction L1 cache is chosen as a reasonable number
considering the problem size of the SPLASH2 benchmark applications [96].

Parameter Value
CPU 233MHZ, in-order functional mode

Unified D/I L1 Cache 64kB, 2-way, 64B block size
L2 2MB, 8-way, 10-cycle Latency

Table 4.1: Baseline Architecture.

Previous work [101] has shown that current sensitivity to subthreshold variation in-
creases dramatically with reduced Vdd . Previous work [93, 14, 91, 50, 101] has illustrated
successful SRAM designs that operate in subthreshold regime. However, all these works
result in an area overhead. Part of the reason for the area overhead is that larger chan-
nel area helps suppress random dopant fluctuations (RDF), the dominating factor in the
subthreshold regime [70].

In order to factor in the design area overhead of voltage scalability for the SRAM, we
carried out Monte Carlo simulations and determined the amount of up-sizing needed for
the memory cells under a certain yield constraint. A exponential function is then fitted to
the results and used in the rest of the Chapter. This up-sizing increases the physical size of
the cache, which, in turn, increases both the access energy and the bus length to connect
the cache. These additional increases were modeled in our evaluations.

4.4.1.2 DRAM and L2 Design

Off-chip access to DRAM is power-hungry because of the high capacitance in the chip
package and off-chip wires. Therefore, a energy-oriented design needs to have a big enough
L2 cache so that it can shield off the majority of the conflicting L1 misses from accessing
the off-chip memory. For our analysis we have chosen a 2MB on-chip L2 cache. Consid-
ering the size of this L2, we decide to fix its operating voltage at nominal (1.2V) instead of
voltage scaling to avoid over design. As aforementioned, designing a large L2 for voltage
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scalability with high yield implies significant area overhead and therefore results in high
switching and leakage energy.

From simulation we found that the L2 is not heavily accessed and has a much lower
activity rate compared to the L1. Therefore we will design the L2 cache by using low
standby leakage techniques such as drowsy cache [49]. The standby leakage is assumed to
be 1/20 of that during active mode. The same argument does not hold for the L1 because
the L1 is accessed considerably more frequently than the L2. The L1 is also smaller in size
than the L2 cache and we are able to trade off some area for energy efficiency and voltage
scalability.

4.4.1.3 Bus Modeling

The physical parameters are drawn from a 0.13um technology doing detailed analysis
of the repeaters and sizes necessary for proper operation. Using this model we can include
bus energy for both the CPU-L1 bus and the L1-L2 bus, which consists of data, address,
and command fields. The length of the CPU-L1 buses scales linearly with cluster size and
the length of the L1-L2 buses linearly with cluster number. Basic footprint size is taken
from a commercial processor core [3]. No breakdown of bus energy is presented in the
graphs, but all graphs and data referring to total energy include the bus energy numbers.

4.4.2 Baseline Machine

Our baseline machine is summarized in Table 4.1. It is a simple in-order CPU running
at 233 MHz with a 64kB unified cache. For all configurations we hold the runtime to be
the same as that of the baseline machine. In Section 6.6 we will look at the optimal choices
at different baseline performance numbers (CPU Frequencies).

4.4.3 Simulation Configurations

We simulate the system by varying the cache size from 4-128kB, the number of clusters
from 1-16, and the number of cores per cluster from 1-8 for each SPLASH2 benchmark.
We then do a power analysis with different voltage scaling techniques. One in which we
do the same Vdd scaling on both the L1 and core, another where we scale Vdd separately
for the L1 and core, and the third where we scale Vth separately as well.
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4.5 Results

In order to analyze the impact of the proposed architectures in energy efficient proces-
sor design, we must quantify the system performance energy trade-off using architectural
simulations. We performed the simulation using the M5 Simulator [10] to determine the
energy consumption for different configurations. During the cluster mode, we assume that
the L1’s are k times faster than the core, where k is the number of cores per cluster.

The relative latency of the components need to be scaled so as to capture the voltage
scaling effect. For instance, when we have a multicore system, each core and L1 inside
the system can be accordingly slowed down compared to the single-core baseline machine,
since our constraint is to keep the runtime constant. In architectural simulation, this is
equivalent to having a faster L2 and DRAM.

4.5.1 Optimal L1 Size

It is known that the size of the L1 affects the system performance in terms of average
access latency, but more importantly we found that it also affects the energy efficiency of
the system. In order to understand how the choice of L1 size impacted the energy perfor-
mance of a system, we first performed an analysis on a supply voltage scaled uniprocessor
system. With the number of parameters we intended to vary for the complete study, this
was a simple way to do a first pass analysis and present some interesting results while only
varying one parameter. We present the results while allowing the die size to increase as we
increase the L1. A similar study was done where the die size was held constant and the L2
was made smaller to compensate the increase in the L1 and the results were similar.

With a single processor and single L1 system, we varied L1 sizes and optimized the
energy consumption for each size by tuning the Vdd and Vth of each component. Figure 4.2
shows the energy consumption for Cholesky. We found similar trends for all the SPLASH2
benchmarks, although the optimal cache size varied across the applications. The energy
consumption for the processor core, L1, and L2 are also shown. As L1 size increases
from 4kB to 128kB, the number of accesses to the L1 remains constant because the same
instruction stream and data pattern come from the processor core. However, L1 energy
consumption increases with larger L1 sizes due to larger array size and larger capacitance.
The other implication of various L1 sizes is the L1 performance. The L1 miss rate reduces
significantly with larger L1s, which also results in a lower number of access to the L2 due
to fewer L1 misses and writebacks. Therefore the L2 energy reduces with larger L1 sizes.
The core’s energy consumption also reduces with larger L1 sizes because of the reduced
number of clock cycles that results from a higher L1 hit rate (lower average access latency).
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4.5.2 Optimal Cluster Size

After having an understanding of how the L1 size impacted energy performance we
move on to studying the impact of multiprocessing and clustering on the energy consump-
tion. The setup for this study is described in Section 5.3. The analysis was done on the 240
configurations for each benchmark.

In order to fully understand the benefit of running in cluster mode Figure 4.1(b) vs.
conventional connection Figure 4.1(a) we specifically compare three cases in which the
overall die size is held constant and present the results in Figure 4.3. Figure 4.3(a) shows
the energy consumption of the three candidates for Cholesky in the SPLASH2 benchmark
suite. The best configuration for energy efficiency is 2 cores per cluster, with 2 clusters.

To help illustrate the reason 2 cores per cluster was optimal we break down the results
in more detail in Figure 4.3(b-d). At 4 clusters with 1 core per cluster, a conventional
CMP, the number of CPU cycles is larger than both of the clustering cases. This occurs
because the average memory access latency is longer because the L1 miss rate is high due
to the fact that shared memory accesses are forced to miss in the local L1 cache and snoop
neighboring L1’s to get the data. Now as the number of cores in a cluster is increased to 2
some of the shared memory of other cores is visible within the cluster’s L1 to both cores
without having to access another L1. This significantly reduces the average memory access
time and results in a reduced number of CPU cycles. Meanwhile the larger shared cache
within the cluster results in a higher hit rate and reduced accesses to the L2. Reducing
the number of access to the L2 reduces the energy consumed by the L2 as was shown in
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Figure 4.3: Three configuration comparison.
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Section 6.1.
As we scale to 4 cores per cluster we now have reduced the L1 miss rate even further,

but the energy per access of the L1 and the energy to operate the large bus to connect the
cores within the cluster begin to outweigh the gains we see in reduced L2 traffic. Also, you
can see that there is not a large reduction in CPU cycles. This happens because the first set
of clustering encapsulated most of the memory sharing and synchronization that took place
in this application.

For this study it is important to note that we chose three points at which the die size
was nearly the same. Remember that there are some interconnect and memory scaling
issues, but the sizes are still close. In the later studies we will present the global optimal
configuration without regard to total cache or die size. We wanted to show in this study
that given a fixed die size, clustering is the optimal choice for this benchmark.

4.5.3 Various Energy Savings Modes

Now that we have shown for a fixed die size that clustering can outperform conventional
CMP designs, we explore the entire design space and analyze the impact of using the Vth

to further improve performance. We again use the same 240 configurations per benchmark
as in Section 6.2. The results presented in this section are for the Cholesky benchmark,
results for other benchmarks are summarized in Section 6.5. In this study we evaluate the
impact of different scaling approaches. Specifically, we assume the baseline single-core
single-cache machine does not do voltage scaling and runs constantly at 1.2V. The three
different scaling approaches are: 1) traditional Vdd scaling using MP while maintaining
one core per L1 cache (Figure 4.1 (a)), 2) Vdd scaling using MP but with cluster mode
configuration and 3) Vdd and Vth scaling with cluster mode configuration. The runtime of
all three systems is set to match that of the baseline machine.

The results are presented in Figure 4.4. Conventional CMP Vdd scaling brings us 38.1%
savings over the baseline machine, but clustering cores with Vdd scaling results in a 18.9%
improvement over traditional scaling techniques and 49.9% improvement over the baseline.
Finally we show that clustered cores with both scaled Vth as well as Vdd yields a global
optimal energy, and about a 53% percent improvement over using traditional scaling tech-
niques on a conventional CMP.

The Vdd scaling technique with conventional CMP finds an optimum with 4 cores and
4 L1 caches at a Vdd of 0.8V. With clustering, the system finds an optimal with 2 cores
per cluster at 3 clusters. The optimal L1 size for all 3 scaling approaches is 64kB for this
benchmark. The energy optimal point was chosen without regard to die size. If given a die
size constraint the energy optimal point can be found within the configurations that meet
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that die constraint. Section 6.2 provides an example of fixed die size analysis where three
configurations with the same die size are compared.

4.5.4 Multi-Dimensional Analysis

To understand the entire design space further we present Figures 4.5, 4.6, 4.7, and 4.8.
These figures breakdown the entire design space for a fixed total L1 size, 128kB, for the
Cholesky benchmark using both Vdd and Vth scaling. In Figure 4.5 we present the total
energy of the system, you can see that there is a well along the 2 cluster axis. This minimum
represents the fact that the optimal number of clusters is 2. Additionally there is a dip along
the 2 cores/cluster line, resulting in a optimal location of 2 clusters with 2 cores per cluster.
To understand this better we break down the core energy in Figure 4.6, the L1 energy in
Figure 4.7, and the L2 energy in Figure 4.8. Note the cluster number axis is in the opposite
direction for Figure 4.7.

The core energy looks like a surface that decreases from left to right and from back to
front. As you go from front to back or from left to right there is an increasing total number
of cores. As we increase the number of cores, we can run each of them at a lower voltage
and still maintain the same performance constraint. Since there is a quadratic relationship
in voltage and a near-linear relationship in computational power as we increase the number
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Figure 4.5: Total Energy for Cholesky.
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Figure 4.6: Core Energy for Cholesky.

of cores, the overall energy consumed reduces until the core reaches the near threshold
regime. If we lower the voltage further we see less energy gain for a similar decrease in
voltage. In this graph the point at which the cores begin running in the near threshold
regime is around 4-6 cores. Beyond that point the improvement form lowering the voltage
is less than the overhead of making the application more parallel and the total increase in
number of cores at a lower voltage.

The L1 energy increases from front to back, decreasing number of clusters. This is
because the fewer clusters that are present in the system the larger the L1 caches will
become. This occurs because we are holding the total cache size on the chip constant. As
we increase the cache size, the energy per access is increased, and therefore the overall L1
energy increases. As we go from left to right, increasing the number of cores per cluster,
the energy increases. As we increase the cluster size, we require that the L1 operate at a
higher frequency to satisfy the requests. This increase in frequency requires us to increase
the voltage of the L1 and the energy savings from the faster communication amongst the
cores is outweighed by the increase in the energy per access at the higher voltage.

In Figure 4.8 we present the L2 cache energy. It is increasing from left to right and from
front to back. This increase is related to the larger number of cores. In particular there are
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Figure 4.7: L1 Energy for Cholesky.
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more cores sharing the same total L1 space, because we held it constant. This results in
more contention and a higher miss rate among the L1’s. With more L1 misses there will be
more L2 accesses and the energy consumed by the L2 will increase. This increase is highly
dependent on how much contention and sharing there is among the different applications.

When the components are summed for the different figures you result in wanting few
clusters to reduce the L2 traffic, but more clusters to keep the L1 sizes smaller and less
energy hungry. This summation leads to an optimal point of around 2 clusters. The core
energy dictates that the optimal total number of cores is somewhere around 4-6 cores.
Divided into 2 clusters that means either 2 or 3 cores per cluster. Thus resulting in the
energy optimal point of 2 cores per cluster and 2 clusters for this benchmark with 64kB of
L1 cache per cluster. This same analysis was done holding either the cluster size or number
of clusters constant to understand the effects of the L1 size on the optimal solution. The
graph is consistent with the points presented in Section 3.2 and was not presented here for
brevity.
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4.5.5 Global Optimal Solutions

Now that we showed the energy optimal point for the Cholesky benchmark we ran
the same analysis for additional SPLASH2 benchmarks and the results are presented in
Table 4.2. The table shows the global energy optima for different applications in the
SPLASH2 benchmark suite, Clustering is optimal for 6 applications with the optimal clus-
ter size of 2 cores.

nc k L1 size (kB)* energy savings
cho 3 2 64 70.8%
fft 2 2 32 72.6%

fmm 8 2 128 79.7%
luc 3 2 32 77.8%
lun 2 2 64 68.4%
rad 16 1 128 84.2%
ray 3 2 128 65.1%

Table 4.2: Each Benchmarks Optimal Configuration. k: number of cores per cluster; nc:
number of clusters; *L1 size is per cluster. Energy Savings is relative to baseline
uniprocessor machine.

4.5.6 Optimality under Different Performances

So far we have compared the energy savings under constant baseline performance,
233MHz. The optimal Vdd/Vth configuration changes with target performance, therefore
we present the optimal energy consumption for Cholesky under different performance re-
quirements Figure 4.9(b). The MP scaling uses clustering and optimal Vdd/Vth selection.
Performance on the x-axis refers to the frequency of the baseline single-core single-L1
machine. With reduced target performance, from right to left in Figure 4.9(b), the energy
savings increases first because of relaxed frequency constraints on each core and L1 cache,
both of which operate in the near threshold regime. Then energy consumption increases
because the cores begin to scale out of the near threshold and into the subthreshold regime
causing considerable performance loss in comparison to the power gain. Also the length-
ened execution time prolongs L2 leakage energy.

The Vdd and Vth settings with different performance targets are shown in Figure 4.9(a).
The Vdd for the L1 slightly reduces from 233MHz to 100MHz due to relaxed frequency.
However it holds around 600mV because lower Vdd implies significant up sizing as de-
scribed in Section 3. And this area increase from SRAM redesigning nullifies the savings
from reduced Vdd . The Vth increases with lowered performance requirements to balance

63



!"#$%!"&%'(&)"&#*%'+%,#-.$/%!"&%#001.2#!.'$%,')&%0#)3
#11&1%#$*%!"&%!'!#1%.$2)&#4&%.$%$5,6&)%'+%2')&4%#!%#%1'7&)
('1!#/&8

9"&% :;% &$&)/<% .$2)&#4&4% +)',% +)'$!% !'% 6#2-=
*&2)&#4.$/% $5,6&)% '+% 2154!&)48% 9".4% .4% 6&2#54&% !"&
+&7&)%2154!&)4%!"#!%#)&%0)&4&$!%.$%!"&%4<4!&,%!"&%1#)/&)
!"&%:;%2#2"&4%7.11%6&2',&8%9".4%'225)4%6&2#54&%7&%#)&
"'1*.$/%!"&%!'!#1%2#2"&%4.>&%'$%!"&%2".0%2'$4!#$!8%?4%7&
.$2)&#4&% !"&% 2#2"&% 4.>&=% !"&% &$&)/<% 0&)% #22&44% .4
.$2)&#4&*=% #$*% !"&)&+')&% !"&% '(&)#11% :;% &$&)/<
.$2)&#4&48%?4%7&% /'% +)',% 1&+!% !'% )./"!=% .$2)&#4.$/% !"&
$5,6&)% '+% 2')&4% 0&)% 2154!&)=% !"&% &$&)/<% .$2)&#4&48%?4
7&% .$2)&#4&% !"&% 2154!&)% 4.>&=% 7&% )&@5.)&% !"#!% !"&% :;
'0&)#!&% #!% #% "./"&)% +)&@5&$2<% !'% 4#!.4+<% !"&% )&@5&4!48
9".4% .$2)&#4&% .$% +)&@5&$2<% )&@5.)&4% 54% !'% .$2)&#4&% !"&
('1!#/&%'+%!"&%:;%#$*%!"&%&$&)/<%4#(.$/4%+)',%!"&%+#4!&)
2',,5$.2#!.'$%#,'$/4!%!"&%2')&4%.4%'5!7&./"&*%6<%!"&
.$2)&#4&%.$%!"&%&$&)/<%0&)%#22&44%#!%!"&%"./"&)%('1!#/&8

A$%B./5)&%C%7&%0)&4&$!% !"&%:D%2#2"&% &$&)/<8% A!% .4
.$2)&#4.$/% +)',% 1&+!% !'% )./"!% #$*% +)',% +)'$!% !'% 6#2-8
9".4%.$2)&#4&%.4%)&1#!&*%!'%!"&%1#)/&)%$5,6&)%'+%2')&48%A$
0#)!.251#)% !"&)&% #)&%,')&% 2')&4% 4"#).$/% !"&% 4#,&% !'!#1
:;% 40#2&=% 6&2#54&%7&%"&1*% .!% 2'$4!#$!8%9".4% )&451!4% .$
,')&%2'$!&$!.'$%#$*%#%"./"&)%,.44%)#!&%#,'$/%!"&%:;E48
F.!"%,')&%:;%,.44&4% !"&)&%7.11% 6&%,')&%:D% #22&44&4
#$*%!"&%&$&)/<%2'$45,&*%6<%!"&%:D%7.11%.$2)&#4&8%9".4
.$2)&#4&% .4%"./"1<%*&0&$*&$!%'$%"'7%,52"%2'$!&$!.'$
#$*%4"#).$/%!"&)&%.4%#,'$/%!"&%*.++&)&$!%#001.2#!.'$48

F"&$%!"&%2',0'$&$!4%#)&%45,,&*%+')%!"&%*.++&)&$!
+./5)&4%<'5%)&451!%.$%7#$!.$/%+&7%2154!&)4%!'%)&*52&%!"&
:D% !)#++.2=% 65!% ,')&% 2154!&)4% !'% -&&0% !"&% :;% 4.>&4
4,#11&)%#$*%1&44%&$&)/<%"5$/)<8%9".4%45,,#!.'$%1&#*4
!'% #$% '0!.,#1% 0'.$!% '+% #)'5$*% D% 2154!&)48% 9"&% 2')&
&$&)/<%*.2!#!&4%!"#!%!"&%'0!.,#1%!'!#1%$5,6&)%'+%2')&4%.4
4',&7"&)&% #)'5$*% G3H% 2')&48% I.(.*&*% .$!'% D% 2154!&)4
!"#!%,&#$4%&.!"&)%D%')%J%2')&4%0&)%2154!&)8%9"54%)&451!.$/
.$%!"&%&$&)/<%'0!.,#1%0'.$!%'+%D%2')&4%0&)%2154!&)%#$*%D
2154!&)4%+')%!".4%6&$2",#)-%7.!"%HG-K%'+%:;%2#2"&%0&)
2154!&)89".4%4#,&%#$#1<4.4%7#4%*'$&%"'1*.$/%&.!"&)%!"&
2154!&)% 4.>&% ')% $5,6&)% '+% 2154!&)4% 2'$4!#$!% !'% 5$*&)3
4!#$*%!"&%&++&2!4%'+%!"&%:;%4.>&%'$%!"&%'0!.,#1%4'15!.'$8
9"&% /)#0"% .4% 2'$4.4!&$!% 7.!"% !"&% 0'.$!4% 0)&4&$!&*% .$
L&2!.'$%J8D%#$*%7#4%$'!%0)&4&$!&*%"&)&%+')%6)&(.!<8
!"#"$$%&'()&$*+,-.)&$/'&0,-'12

M'7%!"#!%7&%4"'7&*%!"&%&$&)/<%'0!.,#1%0'.$!%+')
!"&%N"'1&4-<%6&$2",#)-%7&%)8#$%!"&%4#,&%#$#1<4.4%+')
#**.!.'$#1% LO:?LPD% 6&$2",#)-4% #$*% !"&% )&451!4% #)&
0)&4&$!&*%.$%9#61&%D8%9"&%!#61&%4"'74%!"&%/1'6#1%&$&)/<
'0!.,#% +')% *.++&)&$!% #001.2#!.'$4% .$% !"&% LO:?LPD
6&$2",#)-% 45.!&=% N154!&).$/% .4% '0!.,#1% +')% H% #001.2#3
!.'$4%7.!"%!"&%'0!.,#1%2154!&)%4.>&%'+%D%2')&48%
!"!"$$*+,-.)&-,3$01456$7-885651,$9568'6.)1:52

L'%+#)%7&%"#(&%2',0#)&*%!"&%&$&)/<%4#(.$/4%5$*&)
2'$4!#$!% 6#4&1.$&% 0&)+'),#$2&=% DJJQP>8%9"&% '0!.,#1
R**SR!"%2'$+./5)#!.'$%2"#$/&4%7.!"%!#)/&!%0&)+'),#$2&=
!"&)&+')&% 7&% 0)&4&$!% !"&% '0!.,#1% &$&)/<% 2'$45,0!.'$
+')%N"'1&4-<%5$*&)%*.++&)&$!%0&)+'),#$2&%)&@5.)&,&$!4
B./5)&%;TU6V8%9"&%QO%42#1.$/%54&4%2154!&).$/%#$*%'0!.3
,#1%R**SR!"%4&1&2!.'$8%O&)+'),#$2&%'$%!"&%W3#W.4%)&+&)4
!'% !"&% +)&@5&$2<% '+% !"&% 6#4&1.$&% 4.$/1&32')&% 4.$/1&3:;

,#2".$&8%F.!"% )&*52&*% !#)/&!%0&)+'),#$2&=% +)',%)./"!
!'%1&+!%.$%B./5)&%;TU6V=%!"&%&$&)/<%4#(.$/4%.$2)&#4&4%+.)4!
6&2#54&%'+% )&1#W&*%+)&@5&$2<%2'$4!)#.$!4%'$%&#2"%2')&
#$*%:;%2#2"&=%6'!"%'+%7".2"%'0&)#!&%.$%!"&%$&#)%!")&4"3
'1*% )&/.,&8% 9"&$% &$&)/<% 2'$45,0!.'$% .$2)&#4&4
6&2#54&%!"&%2')&4%6&/.$%!'%42#1&%'5!%'+%!"&%$&#)%!")&4"3
'1*%#$*%.$!'%!"&%456!")&4"'1*%)&/.,&%2#54.$/%2'$4.*&)3
#61&%0&)+'),#$2&%1'44%.$%2',0#).4'$%!'%!"&%0'7&)%/#.$8
?14'% !"&% 1&$/!"&$&*%&W&25!.'$% !.,&%0)'1'$/4%:D% 1&#-3
#/&%&$&)/<8%

9"&% R**% #$*% R!"% 4&!!.$/4% 7.!"% *.++&)&$!% 0&)+')3
,#$2&% !#)/&!4%#)&%4"'7$% .$%B./5)&%;TU#V8%9"&%R**% +')
!"&%:;%41./"!1<%)&*52&4%+)',%DJJQP>%!'%;TTQP>%*5&
!'%)&1#W&*%+)&@5&$2<8%P'7&(&)%.!%"'1*4%#)'5$*%HTT,R
6&2#54&% 1'7&)% R**% .,01.&4% 4./$.+.2#$!% 50% 4.>.$/% #4
*&42).6&*% .$% L&2!.'$% J8% ?$*% !".4% #)&#% .$2)&#4&% +)',
LX?Q%)&*&4./$.$/%$511.+.&4% !"&% 4#(.$/4% +)',%)&*52&*
R**8% 9"&% R!"% .$2)&#4&4% 7.!"% 1'7&)&*% 0&)+'),#$2&
)&@5.)&,&$!4% !'%6#1#$2&%47.!2".$/%&$&)/<%#$*% 1&#-#/&
&$&)/<8%9"&%2')&4%'0&)#!&%#!%#% 4./$.+.2#$!1<% 1'7&)%R**
#$*%R!"% !"#$%!"&%:;4%+')%#11%'+% !"&%47&0!%0&)+'),#$2&
)#$/&%6&2#54&%.!%.4%)5$$.$/%#!%"#1+%!"&%40&&*%'+%!"&%:;8
A$%#**.!.'$%1'/.2%/#!&4%#)&%,')&%)'654!%!"#$%LX?Q%#$*
('1!#/&%42#1&%7.!"'5!%#)&#%'(&)"&#*8%

A$% B./5)&% ;TU#V% !"&% '0!.,#1% $5,6&)% '+% 2154!&)4
.$2)&#4&4%+)',%D% !'%J%+')% !#)/&!4%#6'(&%;YTQP>8%9".4
2#$% 6&% #!!).65!&*% !'% !"&% +#2!% !"#!% .$% ')*&)% !'%,&&!% !"&

;<=>?$@"$?):A$=51:A.)6B2$*+,-.)&$C'18-D"
!" # :;%4.>&%U-KVZ $!$%&'()*+,!&)

"-. J D HG [T8\]
//0 D D JD [D8H]
/11 \ D ;D\ [C8[]
23" J D JD [[8\]
23! D D HG H\8G]
%*4 ;H ; ;D\ \G8D]
%*' J D ;D\ HY8;]
-^%_%'+%2')&4%0&)%2154!&)%%%$2^%_%'+%2154!&)%%%%Z:;%4.>&%.4%0&)%2154!&)
&$&)/<%4#(.$/4%.4%)&1#!.(&%!'%6#4&1.$&%5$.0)'2&44')%,#2".$&

!"# !""#

"$%

"$&

"$'

"$(

"$)

!"#$%&'
'()#$%&'

*%+,-./01.
(%+210.3+,-./01

*+,-./01.,23,4+56.0789:

063,.0;<<
063,.0;/=
0>!0;<<
0>!0;/=

(%+,-./01.
(%+210.3+,-./01

4051%6/7%108924

E-D065$FG"$*+,-.)&$25,,-1D2$01456$4-885651,$
,)6D5,$+568'6.)1:52

H)I
H(I

!"# !""#
"$"?

"$!"

"$!%

*+,-./01.,23,4+56.0789:

@5
.,
-A
7B
:

4051%6/7

Figure 4.9: Optimal settings under different target performances.

switching energy and leakage energy. The cores operate at a significantly lower Vdd and
Vth than the L1s for all of the swept performance range because it is running at half the
speed of the L1. In addition logic gates are more robust than SRAM and voltage scale
without area overhead.

In Figure 4.9(a) the optimal number of clusters increases from 2 to 3 for targets above
150MHz. This can be attributed to the fact that in order to meet the higher performance
constraint we need more computational power. The increase in the number of clusters, and
thus total cores, requires less energy than voltage scaling the smaller number of cores to
meet the same constraint. Figure 4.9(a) also shows that the optimal L1 size changes from
64kB to 128kB for targets below 76MHz because the relative contribution of L2 energy
consumption starts to increase. A larger L1 helps to suppress L2 accesses. Although the
larger L1 incurs more energy per access, the amount of energy saved from reducing the L2
accesses outweighs any increase in the L1.

Finally, we have highlighted the near Vth region on both plots in Figure 4.9. Optimal
energy consumption is achieved at this voltage regime and at a target frequency of tens
of megahertz ( 15MHz-50MHz). These operating frequencies are much higher than those
shown in other subthreshold work [102] and are well suited for parallelizable embedded
applications requiring higher performance, but where battery life is important. Such appli-
cations might include MPEG and MP3 decoding.
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4.6 Split L1 Cache
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Figure 4.10: (a) Clustered I and D, (b) Clustered D and (c) Clustered I architectures.

We further investigated the impact of split instruction (IL1) and data (DL1) caches. By
splitting the unified L1 cache we present a few more architectural choices. First we could
cluster both the IL1 and DL1 for each cluster as in Figure 4.10(a). Second we could explore
other architectures where we only cluster the IL1 and leave each core a private DL1 as in
Figure 4.10(b), or vice versa as in Figure 4.10(c). In this section we will explore those three
different design choices and discuss their impact on different programing models.
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4.6.1 Architectural Trade-offs

There are several architectural trade-offs that occur when we consider splitting the uni-
fied cache. By splitting the L1 cache we remove any contention that was occurring between
the instruction and data streams. In some benchmarks the data stream constantly evicted
instructions from the cache do to conflicts and the overall number of cycles to complete the
program was increased. By removing these conflicts we can decrease the number of cycles
improving energy efficiency. In the next two subsections we break down the benefits of
clustered versus private versions of both the IL1 and DL1.

4.6.1.1 Clustered IL1 vs. Private IL1

At first glance clustering the instruction cache seems to make sense for applications
where each thread is executing the same instructions, i.e. SIMD. The reasoning is that by
sharing the cache you can reduce the die size and improve performance because only one
thread will incur a miss, and others will hit the line in the shared cache reducing execution
time and thus energy. But if the instruction stream is small, the instruction cache can end
up with a low miss rate and a high access rate. Since we are limited by Amdahl’s law in
only improving performance for misses, the gains we see in this case are marginal. Further,
by clustering the instruction cache we require the cache to operate at a higher frequency,
and therefore a higher energy per access. However, if the instruction miss rate is large
enough, then it begins to make sense to share the instruction cache to improve the access
latencies. In applications that run different sets of instructions on each thread, i.e. MIMD
or mutliprogrammed workloads, it does not makes sense to cluster the instruction cache.

4.6.1.2 Clustered DL1 vs. Private DL1

Unlike the instruction cache, the data cache is only accessed by around 30% of the
instructions in the SPLASH2 benchmark suite [96]. With the lower access rate, higher miss
rate, and larger data sharing, the data cache is suited well for clustering. If the application
does large amounts of communication through shared memory or shares large amounts
of data, clustering the data cache will result in shorter synchronization delays and access
times. This results in the program completing in fewer cycles leading to energy savings.
On the other hand, clustering the data cache does not make sense if the applications do not
share data or synchronization variables because it will lead to contention in the cache and
no improvement for the core in terms of cycles to completion.
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4.6.2 Evaluation Methodology

We chose three different SPLASH2 benchmarks to analyze on the three different ar-
chitectures. We wanted to get a variety of different synchronization schemes. We picked
Cholesky because of the high use of locks and pauses but low use of barriers. We chose
LU because it uses many barriers and no locks or pauses. And finally we chose FFT which
uses very few barriers, locks, or pauses.

We simulated the benchmarks with the same configuration choices as before, but now
we allowed the L1 cache to be split. We varied the IL1 and DL1 sizes from 4-128kB
independently while exploring all 3 configurations in Figure 4.10.

4.6.3 Results

The results of the optimal configuration for each of the three architectures on the three
benchmarks is presented in Table 4.3. The energy savings is presented in percentage reduc-
tion over the baseline single core machine with 64kB split IL1 and DL1s. You can see that
the benchmarks prefer to run with a clustered data cache and a private instruction cache for
the best overall energy savings.

IL1 DL1 nc k IL1 size* DL1 size* energy savings

cho

Unified 3 2 64kB Unified 70.8%
Clustered Private 3 2 8kB 128kB 73.0%

Private Clustered 2 2 16kB 64kB 76.5%
Clustered Clustered 3 2 16kB 64kB 71.1%

lun

Unified 2 2 64kB Unified 68.4%
Clustered Private 2 2 8kB 32kB 64.2%

Private Clustered 1 2 16kB 32kB 72.9%
Clustered Clustered 2 2 8kB 64kB 66.4%

fft

Unified 2 2 32kB Unified 72.6%
Clustered Private 1 2 4kB 64kB 72.1%

Private Clustered 1 2 8kB 64kB 75.0%
Clustered Clustered 2 2 4kB 32kB 69.7%

Table 4.3: Each Benchmarks Optimal Configuration for split L1. k: number of cores per
cluster; nc: number of clusters; *L1 size is per cluster. Energy Savings is relative
to baseline uniprocessor machine.

The SPLASH2 benchmarks all exhibited low miss rates for small instruction caches (4-
16kB) so it did not make sense to cluster the instruction cache as described in Section 7.1.1.
This is easily seen in both the FFT and LU benchmarks where each instance of clustering
the IL1 results in worse performance than the unified version. In the case of Cholesky, the
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increase seen over the unified version when the IL1 is clustered is a result of less contention
on cache lines between the instruction and data caches. With less contention we reduce the
number of cycles and gain more energy savings. Even though for Cholesky a clustered
IL1 outperforms the unified cache case, a clustered DL1 and private IL1 is still the overall
optimal choice. This happens for the same reasons as the FFT and LU benchmarks.

4.7 Related Work

There has been a myriad of different work done in both the fields of subthreshold design
and parallel architectures for low power. The most recent work done for power aware
parallel architectures was by Li et al. [57]. Li proposes a dynamic runtime method to
use dynamic voltage and frequency scaling available on cores to optimize power given a
performance constraint on parallel applications. Our work differs in that we focus on near
threshold operation and the additional architectural choices for clustering that it allows.
Li’s work could be extended to work in combination with our design to dynamically put
nodes to sleep to find the most optimal power configuration available. It could also be used
to allow only one core per cluster to operate when applications require more cache space,
or to dynamically reassign threads to cores within clusters that communicate more often.

Other power aware parallel CMP and simultaneous multithreading (SMT) designs have
been proposed by [53, 55, 54, 58, 78]. This work differs from both Li’s [57] and our work
in that it focuses on mutliprogrammed workloads, whereas our work focuses on parallel
applications.

Huh et al. [38] does an in depth study of the design space of CMP’s. However they do
not evaluate either power considerations or the possibility of clustering multiple cores to
the same L1 cache. Other work exploring the design space of CMP’s that considers power
budgets was done by Ekman and Stenstrom [28] although their work focuses on the types
of cores that should be used in a CMP given the amount of parallelism applications present.
Our work differs in that we assume a fixed core design and chose the optimal number of
cores and the amount of clustering that occurs.

There is also an extensive body of work on reducing energy overheads in bus based
CMP’s [64, 65]. Moshovos [64] and others provide different techniques to reduce the
number of snoops into L1 caches by filtering out requests that will not find the block in
that cache. This technique could be used to lower the energy consumption of the snoops
in our system removing one of the performance benefits of clustering. However, clustering
not only eliminates snoop energy but also helps reduce the latency to shared data structures
in the cache within a cluster. This reduction in latency means the system can be run at a
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slower frequency and still complete in time. Snoop filtering techniques help to reduce the
overall system energy further but when removing the energy consumed by snoops in our
simulations we still find clustering to be the optimal choice.

4.8 Conclusions

In this Chapter we have investigated the optimal threshold voltage selection for energy
efficient near threshold design. By separately controlling the supply voltage and the thresh-
old voltage of the core and the memory, we can achieve better energy efficiency. We have
combined these techniques with a novel multiprocessor architecture where multiple cores
share one faster L1 cache in a cluster to further improve energy savings. We found that
for a typical SPLASH2 application the proposed architecture can provide about 70% en-
ergy savings over a uniprocessor system and about 53% over conventional multiprocessor
scaling. The optimal cluster size is 2 cores for most of the SPLASH2 benchmarks that
we investigated, and the system achieves best energy efficiency when operating in the near
threshold voltage regime. The optimal target frequency was that of a single 10-50MHz
core, showing that this technique is well suited for parallelizable embedded applications
requiring higher performance, but where battery life is important such as MPEG decoding.
We further studied the impact of splitting the instruction and data cache. We found that
clustering the data cache while keeping a separate private instruction cache per core per-
formed the best for the SPLASH2 applications providing an energy savings of up to a 77%
reduction over that of a single core machine.
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CHAPTER 5

Signal Processing Architectures

In addition to conventional multiprocessor systems, power has become a critical design
constraint for embedded handheld devices. This chapter proposes a power-efficient single
instruction multiple data (SIMD) architecture, referred to as Diet SODA, for digital signal
processing (DSP) applications. The key design idea is to apply NTC operation on SIMD
architectures to significantly lower the power consumption. The major features of Diet
SODA are very wide SIMD width, scatter/gather data prefetcher, and dual mode operation.
A case study was performed on digital still camera (DSC) applications; the results show that
Diet SODA achieves ∼130x better performance and ∼500X better energy efficiency than a
conventional DSP solution. The work in this chapter was conducted with the collaboration
of my colleagues Sangwon Seo and Mark Woh. Some of the results presented here appear
as part of an article in the Proceedings of the 16th ACM/IEEE International Symposium on
Low Power Electronics and Design [79].

5.1 Motivation

Mobile devices have rapidly proliferated and the deployment of the handheld devices
will continue to increase at a spectacular rate. As today’s devices not only support ad-
vanced signal processing of wireless communication data but also provide for richer sets
of various applications, power dissipation has become a more important design constraint.
Increasing power consumption leads to increasing energy costs as well as impacts chip re-
liabilities. Therefore, more power-efficient processors for embedded DSP applications are
highly required.

Among many DSP applications, high resolution cameras have become an integral part
of most cell phone designs. As a result, the market for these cameras has mirrored the
spectacular growth in mobile phones [22]. Furthermore, the expectation is that these mo-
bile cameras produce an image whose quality should approach that of high quality digital
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still cameras (DSCs). Therefore, a DSC processor needs to be of high-performance to sup-
port a large amount of image data and perform the DSC image processing tasks in a highly
energy-efficient manner in order to conserve critical battery life for other phone applica-
tions.

Traditionally, the DSC image signal processing pipeline is implemented in digital sig-
nal processors (DSPs) or application specific integrated circuits (ASICs). DSP-based solu-
tions [41] support high flexibility and handle various DSC algorithms, but they suffer from
lower performance and higher energy consumption than ASIC solutions. ASIC-based so-
lutions [97, 66] are highly specialized and optimized for the DSC image signal processing
pipeline, but such designs lack flexibility and require longer design time. Therefore, to
achieve high processing performance efficiency at low cost while maintaining programma-
bility, hybrid architectures [85] are employed. In these designs, ASICs are typically used
for a preview mode, where high processing capabilities are desired, and DSPs are adopted
for picture-taking and post-processing modes, where flexibility is more important. How-
ever, such a heterogeneous solution is inefficient to build and maintain.

To address these challenges, this Chapter presents a power-efficient programmable ar-
chitecture, Diet SODA, that has been optimized for DSC image signal processing. Diet
SODA exploits near-threshold operation [100] on a wide-SIMD architecture — SODA [59].
In the near-threshold operation, circuits operate at lower than normal supply voltages, re-
ducing power consumption by ∼100x. Near-threshold operation offers a new opportunity
for mobile applications such as DSCs to reduce power consumption. However, the re-
duction in power consumption comes at a cost of a ∼10X performance degradation. Diet
SODA overcomes these hurdles by exploiting architectural features specific to near thresh-
old operation. The key features of Diet SODA are 1) very wide SIMD width to exploit the
significant amount of data level parallelism (DLP) inherent in DSC applications that helps
overcome the frequency loss from operating in the near-threshold region; 2) scatter-gather
data prefetcher to support 2D memory access enabled by the latency difference between the
full voltage SIMD memory and SIMD data engine operating at near-threshold voltage; and
3) dual voltage modes where the SIMD data engine operates at either full or near-threshold
voltage based on processing demands. The customized architecture was implemented in
Verilog and synthesized in IBM 90nm technology using Synopsys physical compiler.
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Figure 5.1: A typical DSC image signal processing pipeline [21], [41]

5.2 DSC Algorithm Analysis

5.2.1 DSC Signal Processing Pipeline

Figure 5.1 shows a typical DSC image signal processing pipeline [41], which performs
multiple processing steps to generate a high-quality image. The image is first captured by
a CCD or CMOS sensor using a Bayer-pattern [8] color filter array (CFA). Then, the image
is digitized with a 10- or 12-bit A/D converter. The Black Clamp adjusts the pixel values by
subtracting a black offset value from all pixel values. The Lens Distortion Compensation

adjusts the brightness of pixels depending on the spatial locations and the Fault Pixel Cor-

rection interpolates defective pixels with neighboring pixels. After all these pre-processing
steps, Auto White Balance computes the average brightness of each color component and
balances the energy of the colors. Based on the brightness information, Auto Exposure

appropriately adjusts the CCD or CMOS exposure time and gain. After the white balanced
image pixels are compensated by Gamma Correction, CFA color interpolation uses the
one-color-per-pixel Bayer-pattern image to interpolate and generate the full color (R, G,
and B) resolution for each pixel. The RGB color pixels are filtered by De-Noise and scaled
down and sent to the LCD screen in preview mode. In picture-taking mode, the noise-
filtered images are transformed to the YCrCb color domain. Edge Detection detects edges
to help Auto Focus, and Edge Enhancement is performed. Next, False Color Suppres-
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sion occurs, and finally the image is compressed by using JPEG Compression and stored
in flash memory. Later, post-processing tasks such as Histogram Calculation, Histogram

Equalization, and Spatial Frequency Filtering are used to enhance the quality of the stored
images.

5.2.2 Characteristics of DSC Algorithms

In this section, we analyze the key algorithms in the two modes (preview and picture-
taking) of DSC signal processing pipeline and post-processing tasks to find opportunities
for improving the processing performance and energy efficiency.

Mode Task SIMD Scalar Overhead
Black Clamp 100% 0% 0%
White Balance 100% 0% 0%

Preview Auto Focus 71% 14% 14%
Gamma Correction 0% 100% 0%

Picture- CFA Interpolation 87% 0% 13%
Taking Auto Exposure 95% 2% 2%

Color Conversion 100% 0% 0%
Edge Detect/Enhance 81% 0% 19%

Post- Histogram Equalize 38% 44% 18%
Processing Spatial Freq. Filter 77% 3% 20%

Table 5.1: Data level parallelism analysis for DSC image signal processing algorithms. In-
structions are categorized into three groups: SIMD, scalar, and overhead instruc-
tions.

Table 5.1 presents the data level parallelism (DLP) analysis of the DSC signal pro-
cessing algorithms. Instructions are broken down into three categories: SIMD, scalar, and
overhead workloads. The SIMD workload consists of traditional arithmetic/logical func-
tional operations and load/store operations that can be executed in SIMD-fashion. The
scalar workload consists of instructions running only on the scalar datapath such as control
instructions and address generations for local SIMD and scalar memories. The overhead
workload consists of instructions to assist SIMD computations and scalar computations
such as shuffle operations, predication operations, and data movements between the SIMD
datapath and scalar datapath. The workloads of each category are calculated based on
hand-written assembly codes and are weighted by dynamic execution frequency.

As can be seen in Table 5.1, most of the DSC signal processing algorithms have signifi-
cant DLP. Exceptions are Gamma Correction and Histogram Equalization, where memory
access patterns inhibit parallelization. The remaining DSC signal processing algorithms
can be grouped into three categories.
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(1) Pixel Independent Kernels: In this set of kernels, some basic arithmetic/logical
and multiply-and-accumulate (MAC) operations are applied on every pixel independently.
Therefore, these kernels can easily be mapped onto a SIMD architecture. Black Clamp,
Color Space Conversion, Brightness/Contrast Enhancement, and Hue/Saturation Enhance-

ments fall into this category. Although Gamma Correction is also a pixel-independent oper-
ation, this kernel cannot be easily parallelized on a SIMD architecture because each SIMD
lane has to access different memory locations at the same time.

(2) Pixel Dependent Kernels: This set of kernels includes CFA Interpolation, Edge

Detection/Enhancement, and Spatial Frequency Filtering that operate on pixels in a 2D
neighborhood. The size of the 2D neighborhood is typically 3x3, though 5x5 or 7x7 sizes
are also used. Traditional processor architectures spend more than half of the total in-
structions aligning the 2D data [21]. Therefore, for these kernels, 2D data access must be
supported. This is done by a combination of multi-bank memory organization and a SIMD
shuffle network.

(3) Statistics Gathering Kernels: The statistical information of the whole or partial
frame is gathered for White Balance, Auto Exposure, Histogram Calculation and Histogram

Equalization. Some of these kernels can be supported by a SIMD adder tree. Histogram

Calculation is another kernel where memory access patterns inhibit parallelization for a
SIMD architecture.

5.3 Diet SODA Architecture

In this section, we propose a power-efficient architecture, referred to as Diet SODA,
for DSC processors. Diet SODA exploits key characteristics of the DSC image processing
algorithms described in Section 5.2. This architecture operates in two modes: 1) dual
voltage (DV) mode to handle low power applications such as the DSC image processing
pipeline, and 2) the full voltage (FV) mode to handle advanced wireless communications.
In DV mode, the memory operates at full voltage but the SIMD pipelines operate at near-
threshold voltage. In FV mode, the SIMD data engines operate at full voltage as well.

5.3.1 Diet SODA PE Design

Figure 5.2 shows the architectural details of a single processing element (PE) of Diet
SODA. The PE contains two different voltage domains: full voltage (FV) and dual voltage
(DV). DV domain operates at either full or near-threshold supply voltage. The PE consists
of: 1) multi-bank SIMD memory; 2) scalar memory; 3) SIMD data prefetcher; 4) SIMD
pipeline; 5) scalar pipeline; and 6) 8-wide address generation unit (AGU) pipeline.
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Figure 5.2: Diet SODA processing element (PE) for DSCs. The PE contains two different
voltage domains: full voltage (FV) and dual voltage (DV). DV domain operates
at either full or near-threshold supply voltage. The PE consists of: 1) multi-
banked SIMD memory; 2) scalar memory; 3) SIMD data prefetcher; 4) SIMD
pipeline; 5a) scalar pipeline in full voltage domain; 5b) scalar pipeline in dual
voltage domain; and 6) 8-wide address generation unit (AGU) pipeline.

The SIMD pipeline consists of a 256-wide 16-bit datapath with a SIMD register file
(RF), 256 functional units, 256 4-entry buffers used for intermediate data, a two stage
SIMD shuffle network (SSN), and a multi-output adder tree. The SIMD datapath consists
of eight groups of 32-wide SIMD units. With the support of a multi-banked SIMD memory
and an 8-wide AGU pipeline, these groups of SIMD partitions can work on eight different
memory sections concurrently. There are two scalar pipelines, one in each voltage domain;
both pipelines consist of one 16-bit datapath and are used to perform sequential algorithms
in addition to coordinating the SIMD units. The 8-wide AGU pipeline handles memory
address calculation for the 8-bank SIMD memory and the data prefetcher.

5.3.2 SIMD Pipeline Width

Although near-threshold operation allows circuits to consume significantly less power,
the processing performance also degrades. To compensate for the degraded performance,
the number of SIMD lanes is increased.

The DSC signal processing pipeline for a VGA-size (640x480) image and a full-HD
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Figure 5.3: Minimum clock frequencies based on different SIMD width configurations to
run the preview mode of DSC signal processing pipeline shown in Figure 5.1.

(1920x1080) image at 30 fps is used as the evaluation point to decide the number of SIMD
lanes. Figure 5.3 shows the minimum clock frequency required for VGA and full-HD for
different SIMD width configurations — 32, 64, 128, and 256. Thus, to process full-HD
images at 30 fps, a 32-wide SIMD pipeline needs to operate at more than 370MHz, while
a 256-wide SIMD pipeline needs to operate at around 50 MHz.

To investigate how much voltage/frequency scaling can be achieved while still meeting
the performance requirements, the power consumption for each SIMD width configuration
was measured. First, a representative test circuit was laid out in IBM 90nm technology,
parasitic extraction was performed and annotated. Then, SPICE simulations were done to
determine the voltage, frequency, and power characteristics at different supply voltages. To
obtain power numbers, the PE logic was then synthesized with Synopsys Physical Compiler
and scaled to match the representative test circuit. Figure 5.4 shows power consumption
and achievable clock frequencies depending on the corresponding supply voltage for each
candidate SIMD width. The solid vertical lines provide guidelines on what the minimum
supply voltage is required to process VGA and full-HD images at 30 fps. The results
show that although a 32-wide SIMD data engine is capable of handling VGA processing
requirements, to support full-HD images, a SIMD width of greater than 32 is required. On
the other hand, wider SIMD widths do not always guarantee better energy efficiency due
to the additional hardware and critical path delay increases, resulting in a higher minimum
clock frequency. In this paper, a 256-wide SIMD configuration is chosen to maximize
the benefit of using near-threshold operation while maintaining the real time processing
constraints of both VGA and full-HD. With this configuration, the supply voltage needs to
be 600mV using a clock frequency of 50MHz.
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(a) 32-wide SIMD configuration
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(b) 64-wide SIMD configuration
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(c) 128-wide SIMD configuration
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(d) 256-wide SIMD configuration
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Figure 5.4: Near-threshold operation is applied to four different SIMD width configura-
tions: 32, 64, 128, and 256. Solid vertical lines provide guidelines for the mini-
mum supply voltage necessary to meet VGA and full-HD processing demands.
Gray boxes represent the near-threshold regions.

5.3.3 Scatter-Gather Data Prefetcher

While operating in the DV mode, the SIMD memory operates significantly faster than
the SIMD pipeline. Therefore, two-dimensional (2D) data accesses can be achieved by
performing multiple memory accesses to the same memory banks in a single cycle of the
SIMD pipeline. There is also sufficient time to perform complicated shuffling operations
before delivering the data. Because of these non-traditional memory access patterns and
additional shuffling capabilities, a significant reduction in the required number of SIMD
instructions can be obtained.

Figure 5.5 shows the process of data alignment using the SIMD data prefetcher. First,
the required data is read from a multi-bank memory. Then the data prefetcher stacks the
data in the location indicated by the data prefetcher pointer. The pointer then advances to
the next data section and repeats the process for the next load operation. In addition, with
the support of SSN, more complex shuffle operations can be implemented.
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Addr #2
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Load Addr #2, Bank4 i1 j1 k1 l1 a3 b3 c3 d3 e3 f3 k3 l3 e4 f4 g4 h4

Data Prefetcher Pointer

Figure 5.5: Example of complex data shuffling with 4-bank 4-wide SIMD memory, SIMD
data prefetcher, and 16-wide buffer.

5.3.4 Operating Modes

In this section, dual voltage (DV) and full voltage (FV) modes in Diet SODA are de-
scribed. Table 5.2 provides the configuration of each component of Diet SODA PE for each
mode.

5.3.4.1 DV Mode

In the DSC signal processing pipeline, preview and picture-taking tasks are performed
in DV mode because these tasks do not require very high data processing rates. Conse-
quently, the supply voltage of the SIMD data engine is operated at near-threshold voltage
to significantly lower energy consumption. More specifically, the SIMD pipeline and scalar
pipeline (5b in Figure 5.2) in the DV domain operate at near-threshold voltage, while the
SIMD memory, scalar memory, SIMD data prefetcher, and 8-wide AGU pipeline operate
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PE

Components
1. Multi-Bank SIMD Memory

2. Scalar Memory

3. Data Prefetcher – Buffer & Buffer Handler

3. Data Prefetcher - SSN

5a. Scalar pipeline

on

on

on

on

on

4. SIMD pipeline – SIMD RF

4. SIMD pipeline – Other modules except SIMD RF

off

on @ NTV

5b. Scalar pipeline on @ NTV

DV Mode FV Mode

6. 8-wide AGU pipeline on

on

on

off

on

off

on

on

on

on

Table 5.2: Architectural modules that are turned on and off for dual voltage (DV) and full
voltage (FV) modes.

at full voltage. As can be seen in Table 5.2, the SIMD RF is switched off because the
latency of the SIMD memory is much lower than that of SIMD data engine so the SIMD
pipeline is capable of directly handling data from the SIMD memory. This results in a
reduction of energy consumption by eliminating SIMD RF accesses. The 4-entry buffer in
each SIMD lane operates as a small RF to hold recently produced values for consumption
by subsequent instructions.

5.3.4.2 FV Mode

Recent DSCs support video recording at full-HD (1920x1080) resolution. This neces-
sitates additional processing capability, and therefore requires Diet SODA to operate in
FV mode. In this mode, the SIMD pipeline operates at full voltage along with the SIMD
memory and 8-wide AGU pipeline. On the other hand, the SIMD data prefetcher is turned
off because there is no time slack between the SIMD memory and the SIMD data engine
to prefetch data in advance. Also, the scalar pipeline (5a in Figure 5.2) in the FV domain
is turned off and another scalar pipeline (5b in Figure 5.2) in the DV domain works for
the overall system. In this mode, the SIMD RF is switched on so that faster operations are
supported.

5.3.5 Mapping Example: CFA Interpolation

This section describes how one of the key DSC algorithms, CFA interpolation, is
mapped onto Diet SODA. The edge-directed CFA interpolation compares horizontal gra-
dients and vertical gradients, and the interpolation method is chosen as described in Fig-
ure 5.6-(a). In Diet SODA, the data prefetcher loads Addr#1 and Addr#3 from SIMD
memory, and shuffles them to obtain v0 by using the data prefetcher and SSN, Figure 5.6-
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(b).
The aligned v0 is then used to calculate the vertical gradients (v2), Figure 5.6-(c). Sim-

ilarly, Addr#2 is loaded and shuffled to obtain v1 which is used to calculate the horizontal
gradients (v3). With these SIMD registers (v2 and v3), the edge-directed interpolation is
easily implemented. For example, based on the comparison of the first elements of the two
vectors (b1− j1=∆H and e1− g1=∆V), the second elements of the vectors are shifted (
(b1+ j1) >> 1, (e1+ g1) >> 1) or add-shifted ( ((b1+ j1)+ (e1+ g1)) >> 2 ). This
series of operations rely upon the data prefetcher and SSN in FV domain and the SIMD
pipeline in DV domain.

Thus, the data prefetcher module aligns data for the SIMD data-path. Also the vector
for the horizontal gradients (v3) are prepared with v1, which are loaded from Addr#2 and
shuffled. Therefore, this CFA interpolation process is expedited by data prefetcher module
to align data for the SIMD datapath.

5.3.5.1 3x3 Convolution

A 3x3 convolution ( 5.1) is one of the commonly used algorithm in DSC signal pro-
cessing pipeline such as edge detection and edge enhancement. There are many ways to
program this algorithm on Diet SODA and here, Figure 5.7 shows one of the methods how
to map 3x3 convolution on Diet SODA. a1 a4 a7

a2 a5 a8

a3 a6 a9

∗

 b1 b4 b7

b2 b5 b8

b3 b6 b9

=
9

∑
k=1

ak ∗bk (5.1)

The three pixel rows are loaded into three SIMD registers: v1, v2, and v3. The 3x3
mask values are loaded into nine scalar registers. The v1 is multiplied by c11, and then v1 is
shuffle down by 1 and multiplied by c12, and v1 is shuffled down by 1 again and multiplied
by c13. These three multiplied SIMD registers are added, then v4 contains inner-product of
the first rows. The v2 and v3 are process in the same way to generate v5 and v6. The SIMD
addition of v4, v5, and v6 generate the final convolution values per each lane. For example,
the first element is ∑

9
k=1 ak ∗ bk, and the second element is ∑

12
k=4 ak ∗ bk. In this way, 3x3

convolution process is parallelizable.
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(b) Data alignment by data prefetcher and SSN
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Figure 5.6: An Edge-directed CFA interpolation mapped on Diet SODA.

5.4 Results and Analysis

5.4.1 Methodology

The DSC image signal processing pipeline algorithms are implemented in C to evaluate
system performance, memory requirements, and non-parallelizable bottlenecks. Next, the
C benchmark codes [72] are transformed to assembly codes for Diet SODA. The Diet
SODA processor is implemented as an RTL Verilog model and synthesized for IBM’s 90nm
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Figure 5.7: A 3x3 Convolution operation mapped on Diet SODA. A 3x3 convolution mask
is applied to 3x3 pixels.

technology using the Synopsys Physical Compiler. The clock frequency is targeted for
400MHz @ 1V, and the power numbers for the SIMD data engine are scaled down for
50MHz @ 600mV by the process shown in Section 5.3.2.

5.4.2 Area and Power

The area and power breakdown of this processor are presented in Table 5.3. The pre-
view mode of full-HD images at 30 fps consumes about 70mW and 246mW in DV mode
and FV mode, respectively. Therefore, the DV mode offers about 3.5X better power effi-
ciency.
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PE

Total

Components

SIMD Data eDRAM (128KB)

SIMD Register File (8KB)

SIMD ALUs, Multipliers, and SSN

SIMD Pipeline+Clock+Routing

Data Prefetcher

90nm (1V@400MHz, 600mV@50MHz)

Area
mm2

Area
%

1.04 8 %

3.17 23 %

4.50 32 %

1.42 10 %

1.13 8 %

13.85 100 %

Power
mW

Power
%

32 46 %

- -

5 7 %

2 3 %

3 4 %

70 100 %

SIMD Buffer (2KB)

SIMD Adder Tree

0.58 4 %

0.49 4 %

4 6 %

< 1 < 1 %

Scalar/AGU Pipeline & Misc. 1.53 11 % 24 34 %

Dual Voltage Mode

Power
mW

Power
%

17 7 %

54 22 %

81 33 %

42 17 %

- -

246 100 %

27 11 %

1 < 1 %

24 10 %

Full Voltage Mode

Table 5.3: Area and Power Summary of Diet SODA for Preview Mode of Full-HD Im-
ages at 30 fps. For comparison, the results of both DV mode and FV mode are
presented. The eDRAM proposed in [74] are used for SIMD local memory.

About 80% of the total power dissipation in DV mode is consumed by SIMD memory
and the scalar/AGU pipeline operating at full voltage. In particular, the SIMD memory
consumes a large part of the power because the number of SIMD memory accesses is
increased due to the SIMD RF being switched off. However, the SIMD data engine operat-
ing in DV mode consumes 18X less power than the SIMD datapath operating in FV mode,
which offsets the increased SIMD memory power and highlights the advantage of using
near-threshold operation.

5.4.3 Performance

Table 5.4 presents the latencies of DSC processing algorithms - preprocessing (Black

Clamping, Lens Distortion Compensation, Fault Pixel Correction, White Balance, Gamma

Correction), CFA Interpolation, Color Space Conversion, Edge Detection/Enhancement,
Scaling, and JPEG Compression. As can be seen in Table 5.4, the preview modes of both
VGA and Full-HD images are processed within a time constraint of 33 ms thus meeting the
30 fps requirement.

CFA Interpolation and Edge Detection/Enhancement are the most demanding work-
loads taking about 60% of the processing time. While most algorithms deals with only one
color component (R, G, or B) per each pixel location, CFA interpolation generates all of
three components for each pixel locations. Therefore, the memory size and workload for
this interpolation algorithm are increased. Edge Detection/Enhancement works with only
one component per each pixel location, but 3x3 matrix convolutions in this task require
significant processing time and shuffling for MAC calculations and realignments.
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Task Latency (VGA) Latency (Full-HD)
Black Clamp,
Distortion Compensation,
Fault Pixel Correction, 0.57 ms 3.89 ms
White Balance,
Gamma Correction
CFA Interpolation 1.02 ms 6.67 ms
Color Conversion 0.36 ms 2.43 ms
Edge Detection 0.82 ms 5.29 ms
Edge Enhancement
False Color Suppression 0.31 ms 2.11 ms
Scaling
Total 3.08 ms 20.38 ms

Table 5.4: The Latencies of DSC signal processing pipeline algorithms for the preview
mode of a VGA image and a Full-HD image.

5.4.4 Comparison With Other Solutions

The DSC image signal processing pipeline in Figure 5.8 [21] is used to compare the
performance of Diet SODA with one high-end commercial DSP and one coarse-grained re-
configurable image stream processor — TI TMS320C64x [1] and CRISP [21]. The pipeline
is divided into three task groups: 1) color gain adjustment, gamma correction and CFA in-
terpolation; 2) noise reduction and smooth filter; and 3) color space conversion and edge
enhancement.

White 
Balance

Gamma
Correction

CFA 
Interpolation

Noise
Reduction

(Media Filter)

Smooth Filter
(3x3 LPF)

Color Space 
Conversion

Edge 
Enhancement

Task Group 1 Task Group 2 Task Group 3

Figure 5.8: A Test DSC image signal pipeline [21]

Table 5.5 shows the execution time comparison with TMS320C64x, CRISP, and Diet
SODA for a 4072x2720 image. Results show that Diet SODA is approximately 140X and
1.6X faster than TMS320C64x and CRISP, respectively. The wide SIMD datapath allows
the DSC image signal processing algorithms to operate on many pixels at the same time.
In addition, scatter-gather data prefetcher helps data alignment issues.

Table 5.6 shows comparisons of technology, area, power consumption, and normal-
ized energy with TMS320C64x and CRISP. Normalized power and area results for 90nm
technology are estimated using a quadratic scaling factor based on Predictive Technology
Model [43]. The results show that the energy efficiency of Diet SODA is more than 500X
better than that of TMS320C64x and also comparable to that of the reconfigurable image
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TMS320C64x [1] CRISP [21] *Diet SODA PE
Task Group 1 6440 ms 220 ms 110 ms
Task Group 2 20550 ms 110 ms 80 ms
Task Group 3 9690 ms 110 ms 80 ms
Total 36680 ms 440 ms 270 ms

Table 5.5: Execution Time Comparison with TI TMS320C64x, CRISP, and Diet SODA.
Task Group 1 - White Balance, Gamma Correction, CFA Interpolation; Task
Group 2 - Noise Reduction, Smooth Filter; Task Group 3 - Color Space Conver-
sion, Edge Enhancement. *Diet SODA operates in DV mode.

stream processor, CRISP [21]. Even though we show comparable energy and only slightly
improved performance numbers over the CRISP design, our design is more flexible and
maintainable because the reconfigurable interconnection and heterogeneous processing el-
ements of CRISP must be manually designed before fabrication.

TMS320C64x [1] CRISP [21] Diet SODA PE
Tech. 0.13um 0.18um 90nm
Freq. 600MHz 115MHz 400MHz,50MHz
Power 718mW@1.2V 218mW@1.8V 69.6mW@DV**
Area* 34.5mm2 1.9mm2 10.4mm2

Energy* 11k 9.3 18.8

Table 5.6: Chip Statistics and Energy Comparison with TI TMS320C64x, CRISP and Diet
SODA. *Area and energy are normalized to 90nm technology. **Diet SODA
operates in DV mode - 1V and 600mV.

5.5 Conclusion

In this chapter, a programmable substrate for an ultra-low power signal processor using
near-threshold operation was proposed. Near-threshold operation reduces energy but suf-
fers from degraded performance, but this can be overcome by using parallelism. DSC algo-
rithms on SIMD architectures offer an abundant amount of data level parallelism, forming a
natural synergy with near-threshold operation. In addition, because memory systems oper-
ate at faster rates than SIMD data engines in near-threshold operation mode, scatter-gather
prefetcher was introduced to exploit latency difference and lower instruction counts. Diet
SODA also uses a dual voltage mode to increase performance for kernels that requires high
processing power. Our results show that Diet SODA with a 256-lane SIMD unit operating
at 600mV and 50MHz in an IBM 90nm technology can meet the processing requirements
of full HD resolution at 30 fps while consuming only 70mW. This is on the order of 130X
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better performance and approximately 500X better energy efficiency over a DSP solution,
and provides a more flexible solution than equivalently powered ASIC designs.
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CHAPTER 6

Voltage Boosting

While traditional designs can reduce voltage to save power, their scaling range is limited
because they are optimized to maximize performance at high nominal voltages. On the
other hand, parallel systems optimized for NTC operation cannot achieve the same single
thread performance as traditional designs. Analysis shows that systems designed for NTC
perform, on average, with 40% better energy-efficiency. In this chapter, we explore low-
voltage system designs that use voltage boosting—raising the voltage above nominal—to
provide greater single-thread performance when it is needed. Specifically, the use of dual-
Vdd power distribution is explored to enable fast boosting—switching in 10s of cycles—to
overcome serial bottlenecks. Furthermore, dynamic frequency and voltage scaling can be
leveraged to adjust the nominal/boosted voltage ratio to adapt to long-term variations in
program behavior over 10,000s of cycles.

Through two case studies, it is demonstrated that boosting helps overcome paralleliza-
tion limitations in transactional memory programming and throughput computing. In trans-
actional memory, boosting mitigates penalties from high conflict rates, achieving up to a
50% performance improvement (12% on average) over a conventional system with the
same thermal design power. In throughput computing, results show that a near thresh-
old boosted system can match the 99th-percentile request latencies of a full-voltage non-
boosted system while operating at a at 70% lower power.

The work in this chapter was done with the collaboration of my colleagues Geoffrey
Blake, David Meisner, and Dave Fick.

6.1 Introduction

Typically, designers of an energy-efficient system begin by selecting a design optimized
for high-performance operation and reduce power consumption by lowering its voltage—
traditional dynamic frequency/voltage scaling (DVFS). This design approach enables the
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best performance at high voltage; however, this approach limits how far operating voltage
can be lowered due to leakage energy and increased variability, providing only marginal
energy savings opportunity.

Instead, we advocate a design approach where a system is optimized primarily for low
voltage operation. Under this approach, leakage and variability become key design con-
straints, and can be addressed through transistor sizing and other circuit techniques. Chap-
ter 4 argues that multicore parallelism might be used to overcome the degraded performance
of low voltage operation, as the lower supply voltage allows many more cores within a fixed
thermal design power (TDP) budget—the maximum power the cooling system is designed
to dissipate—while achieving far greater energy-efficiency per core. This chapter will show
that designs targeted for low-voltage operation are, on average, 40% more energy efficient
than conventional designs. Unfortunately, this approach comes at the expense of the high
single-thread performance achievable by conventional high-voltage designs.

The underlying premise of the NTC approach is that workloads can be effectively par-
allelized. However, in some cases, single thread performance may be needed to overcome
“Amdahl bottlenecks” in applications. These bottlenecks could arise from inherently se-
rial code regions, lock contention, and/or communication overheads. Single-thread per-
formance might also be needed to meet latency targets for tasks that fall in the long tail
characteristic of many server task-size distributions. To mitigate these Amdahl bottlenecks
in NTC architectures, this chapter introduce a design for voltage boosting that exploits the
use of dual Vdd rails to allow cores to switch frequencies in 10’s of cycles—significantly
less than the 10,000’s of cycles required for traditional DVFS—in order to respond to short-
lived bottlenecks. Our key contributions are:

• How to boost

– Circuit designs for voltage boosting

– Analysis of voltage boosting architectures

• When to boost

– Overcoming transactional memory bottlenecks

– Reducing tail response time in server workloads

Our results show that boosting can overcome bottlenecks introduced by conflicts in
transactional memory, and can achieve up to a 50% performance improvement, 12% on
average, over a non-boosting system. A second analysis shows that in web workloads,
where request latency is critical, the 99th-percentile response time can be reduced by 35%
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with the use of voltage boosting, which has a TDP of 70% less than a traditional full-voltage
system with a matching 99th-percentile latency.

6.2 NTC Impact on Single Thread Performance

This section gives detail on reasons why single thread performance is still important in
NTC systems with high degrees of parallelism, like those discussed in Chapter 4.

6.2.1 Parallelization Complications

The NTC approach assumes that the application can be efficiently parallelized. This
assumption has many complications, even for systems like web servers where abundant
parallel work exists. This chapter explores three main problems: (1) Amdahl bottlenecks,
or serial/communication portions of code that limit scalability of parallel systems; (2) the
difficulty of programming parallel applications; and (3) the increase in latency created by
parallelization.

6.2.1.1 Amdahl Bottlenecks

When code is parallelized, there are often regions that are inherently serial. During
these regions, many cores may be stalled waiting for another core. For example, cores
may stall at a barrier waiting for the last-arriving core. Another example is in producer-
consumer relationships, where the consumer may stall until the producer supplies data. A
third example arises in lock-based code, where several cores may contend for the same
lock. These will be referred to as “Amdahl bottlenecks”.

Figure 6.1(a) shows a situation where CPU 0 creates an Amdahl bottleneck. In this case
CPU 0 has a critical section (or lock) that is shown in pink. As additional cores CPU 1-4

run out of parallel work (or stall on the same lock) they idle waiting for CPU 0 to complete.
The Cn measurement at the top shows how many cores are stalled due to the critical section
as time progresses. Figure 6.1(b) shows that if the critical section is boosted to run faster,
it can reduce the latency of the other cores and the total idle time of the system. In Section
6.5 a transactional memory system with such bottlenecks will be analyzed, and results will
show that boosting improves performance by as much as 50% in workloads with excessive
bottlenecks.
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Figure 6.1: (a) Amdahl bottleneck in a system and how boosting (b) can be used to improve
the system.

6.2.1.2 Programability

Another major problem with parallel code is that it is difficult to write and verify. In
lock-based systems, critical sections are protected using lock variables. Careful ordering is
needed in acquiring these locks to avoid deadlock. In addition, programmers are required
to use barrier and fence operations in weakly consistent memory systems to ensure proper
code behavior. Since errors may only appear in certain interleavings of the parallel code, it
is difficult to verify such systems. Recent work in the area of transactional memory [75] has
shown that by using transactions, students can create code with less errors. However, these
novice transactional programmers may create large transactions with a high probability of
conflicts with other transactions. In the cases where contention is high, parallelism is hin-
dered as transactions continually abort and restart. The net result is a system that consumes
more energy, and achieves only moderate gains in performance even with substantially
more cores. In Section 6.5 a study will show how voltage boosting can overcome these
high conflict workloads and improve performance, while providing the programmability
benefits of transactional memory.
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6.2.1.3 Latency and Response Time

Even systems with inherently large amounts of parallelism still may be hindered by
parallelization. For example request-parallel systems, such as web servers, serve multiple
independent requests concurrently. Figure 6.2 shows the impact of parallelism on through-
put and latency (response time) in SpecWeb99.
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Figure 6.2: SpecWeb99 latency, throughput, and power for various parallel operating
points.

As shown, for small numbers of cores the system has a low latency, but the cores are
clocked at high frequency consuming larger amounts of power. For systems with higher
degrees of parallelism, the same throughput can be achieved at lower power levels, however
the latency of a single request becomes larger. If the system is subject to a per-request
response time target, performance can be reduced only until the deadlines are just met.
In Section 6.6, a web server workload will be analyzed to show that system TDP can be
reduced and boosting can help reign in the 99th-percentile latencies, reducing variation in
the response time.
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6.3 Circuit Techniques

Voltage boosting—raising the voltage above nominal—can allow systems designed for
energy-efficient operation to operate at higher frequency to overcome Amdahl bottlenecks
or reduce latency. For the system to support boosting, there are several design considera-
tions. First, when boosted, the system can not exceed TDP. Second, the boosting capability
should minimally impact the performance of the system at normal operation. And finally,
the area overhead on the system should be kept low.
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Figure 6.3: Dual-Vdd chip. Each core provides decap on high voltage rail to allow a single
core to boost in 10’s of cycles. DVFS can be used on external power supplies
to adjust degree of boosting over longer time frames. Area overhead of de-
cap and power transistors is 5-10% for 16 cores. Either an additional metal
layer is needed to route the second power grid, or an additional 10% area over-
head[10,22].

6.3.1 Boosting via Dual-Vdd

To meet these objectives, this chapter proposes implementing voltage boosting via dual
power supplies, as illustrated in Figure 6.3. A dual-Vdd system has two distribution net-
works for Vdd supplied by two independent external voltage sources, high and low. Each
core in the system is connected via multiple power transistors (shown as a single transistor
in the diagram) to each of the voltage rails. In addition, decoupling capacitors connect in
parallel with each core on the high voltage network, improving the stability of the network
during voltage switches. Dual-Vdd systems have been proposed in the past [89, 45, 56],
but differ from this approach in the scope and speed of switching as well as the use of
decoupling capacitors.

In normal operation all the cores are connected to the low voltage rail. To boost per-
formance, a single core is switched from the low rail to the high rail. Only a single core
may switch at a time to limit voltage droop on the high rail. The key insight is that the total
decoupling capacitance presented by the cores is much larger than that of a single core.

92



!" #" $" %" &" '!" '#" '$" '%"

!"#$%&

()*+",-../0"12/34*5"

627"895:-5;<0"

()*+"895:-5;<0"

=22>3"?94;>)@2;"6435;<0"

Figure 6.4: Boost transition. When boosting occurs, voltage droops on the high supply,
core remains at low frequency. Once stable the frequency changes.

Thus, if only one core switches, then the voltage droop on the supply is small and recovery
is fast. The number of cores that may be powered off the high rail is limited either by the
TDP of the chip, or the current delivery capacity of the high-voltage rail.

Durring transitions, the high voltage net will droop (see Figure 6.4). During the droop,
all cores on the high rail must operate at the low frequency to avoid setup and hold time
violations. Once the voltage stabilizes, cores can begin operation at a higher frequency. To
react rapidly to short-lived bottlenecks, this transition time should be kept short. Based on
calculations for a ARM Cortex-M3 that has been synthesized, routed, and back-annotated
for capacitance, our estimates show that, in a 16-core system, the area overhead of the
decoupling capacitance is less than 5% to achieve a transition time of less than 20 cycles.
In addition to the 5% area overhead for decoupling capacitance, either an additional metal
layer is needed to route the high voltage power grid, or an additional 10% area overhead [45,
89]. For larger systems consisting of more cores, the area overhead is reduced because the
extra capacitance can be distributed amongst the cores. The key point is that using a dual-
Vdd system, a core can boost in 10’s of cycles with less than a 5% area overhead. Section
6.5 will provide a sensitivity analysis of the boosting latency on performance.

6.3.2 Boosting Degree via DVFS

When systems are deployed they carry a maximum thermal power budget. This allows
package engineers and system designers the ability to guarantee they are able to provide
both enough energy and cooling for the system. Because the system needs to maintain a
strict thermal power budget, if one core needs to boost then the other cores must be lowered
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to compensate. For example, if the thermal budget allows all 16 cores to run at 320MHz
and a single core is boosted to 1GHz, the remaining cores need to be reduced to 250MHz
to stay within the thermal design budget. Since it takes long periods of time to transition
cores to a lower voltage via the off-chip regulator, the low voltage rail must be already at
the low operating point before the boost happens. This means that if there is no suitable
candidate for boosting, i.e. the work is perfectly parallel, than this lower voltage on the rail
degrades overall performance. Therefore, there is a optimal ratio of boosting based on the
amount of bottlenecks in the system.
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Figure 6.5: DVFS Techniques to adjust boosting degree. DVFS operates over 10’s of mi-
croseconds and responds to changes in workload characteristics. The more
bottlenecks in the system, the greater the boosting difference.

Using DVFS the system can adapt the difference between the high and low voltage rails
to match the amount of bottlenecks present in the system. If the system has many bottle-
necks, then the boosting differential should be larger. Since DVFS takes many thousands
of cycles to adjust voltage, it should be used to adjust the voltage differential over phases
of program behavior. Figure 6.5 shows how DVFS can be applied on the supply voltages
to adapt the degree of boosting to match the system workloads. Note that the timescale for
adjusting such voltages is in microseconds.

Combining these two techniques, voltage boosting can help overcome bottlenecks by
boosting in 10’s of cycles, and the system can adapt the amount of boosting based on the
amount of bottlenecks present in the code over longer phases of execution.
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6.4 Boosting Architectures

6.4.1 Designs and Tradeoffs

There are many ways to configure a system that supports voltage boosting. Rather than
lower the voltage of all the cores in the system as described in Section 6.3 to accommodate
a thermal budget a system could temporarily clock gate several cores to make room in
the thermal budget. The following subsections will describe 3 such systems and describe
the tradeoffs associated with each. This section concludes with simulation results of these
systems on scientific workloads.

6.4.1.1 Traditional CMP Designs

Figure 6.6(a) presents a traditional chip multi-processor (CMP) architecture. In this
system each core has a private L1 and connects to a shared L2 through a bus. There are
several options for boosting. The first approach is simply to turn off some cores and their
associated L1 and boost the remaining cores, Figure 6.6(b). If the system has writeback
L1 caches, when boosting occurs the system must stall as the dirty lines in each L1 that
is turned off is written back to the L2. If on the other hand the L1’s were to be write-
through, the bandwidth on the bus would be extremely high in the non-boosted mode. This
approach allows the cores to scale to the highest voltage, because they can scale up by the
power saved from both the L1 and cores that are turned off.

The second approach is presented in Figure 6.6(c), where just the cores are turned off.
This allows the system to boost immediately, but because the L1’s remain on the boosted
cores can not boost to as high of a voltage. The caches can also improve performance by
continuing to snoop and reply to requests for dirty lines in the cache. However, the cache
space is ultimately wasted, as there is no way for the boosted cores to put data in them that
wasn’t already present when the system went to boosted mode.

6.4.1.2 NTC CMP Designs

The next set of designs seeks to leverage some interesting findings from NTC operation
and to provide fully utilizable cache space in boosted mode. The first observation is that
due to the differing activity factors for SRAM and logic, the optimal operating point for
caches and cores is different. Chapter 4 showed that SRAM performs better at slightly
higher voltages and speeds, as can be seen in Figure 6.7.

This led to a proposed architecture where the cache is run at a faster rate than the cores,
and multiple cores shared a L1, see Figure 6.8(a). In this system the cache is run at 4X the
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Figure 6.6: Traditional CMP Architectures and Boosting Options (a) Non-Boosted, (b)
Boosted, (c) Boosted w/ Snooping.
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Figure 6.7: Difference in energy optimal SRAM and Logic. Note SRAM has an optimal at
higher voltages, enabling NTC architectures.
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frequency of the cores. The cache is than time multiplexed to provide each core a response
in a single cycle. This allows cores to communicate data within the L1 without having
to snoop on the bus, thus reducing energy. The total L1 size is less than 4X the size in
the traditional design space, because the cores can achieve the same performance with less
total cache do to cache sharing and reduced runtime.

It is important here as well, because the system can be boosted with less impact. First,
the cache doesn’t need to change frequency only the cores. The system simply disables 3
of the cores and speeds up the remaining core to match the frequency of the cache. This
has two main benefits. First, the core still sees the full cache space. This means that the
core has more space and will take fewer misses. Second, the latency of the core to main
memory increases and the additional cache space helps to hide that latency.
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Figure 6.8: NTC Architecture (a) Non-Boosted, (b) Boosted

6.4.2 Tradeoff Analysis

Table 6.1 shows the tradeoffs of the 4 different systems. Time to boost is best for all
systems which can do so instantaneously, no need for writeback. Unboosted bus bandwidth
is best for the NTC system because it doesn’t need to snoop as often and the cores share
an L1, it is worst for the writethrough (WT) case, where the constant writethrough traffic
occurs. Traditional systems can boost to the highest frequency because they disable the
cores and L1’s. The snooping design boosts to the lowest frequency because it leaves all
the L1’s on. The NTC design receives a 0 for boost frequency, because it can’t boost as
high as the traditional designs but can achieve higher than the snoop based because the
total cache space is smaller due to sharing effects in non-boosted mode. Total cache space
is best for NTC where the full cache is available, and marginally better for the snoop case
due to limited snoop hits within the caches still powered on.
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Config. Time to Bus Boost Cache
Boost Bandwidth Freq. Space

Trad. WB - 0 + -
Trad. WT + - + -
Trad. Snoop + 0 - 0
NTC + + 0 +

Table 6.1: Summary of the tradeoffs of each boosting architecture. + Good, - Bad, 0 Neu-
tral

6.4.3 Methodology

Power analysis for the cores was done using synthesized ARM Cortex-M3 cores post
place and route (APR). Caches for NTC operation were designed using the technique pro-
posed by Chen et al. [20]. Power was calculated for caches post APR for both traditional 6T
and NTC enhanced 6T designs. All systems were compared with the same thermal design
budget (Peak Power Draw). The analysis was done to examine which of the approaches
provides the best boosted performance and is therefore a static run of the benchmark in the
boosted state.

6.4.4 Simulator and Benchmarks

For this study the M5 simulator [9] was used. It was modified to support the cache
sharing required by NTC architectures. The benchmarks were from the SPLASH-2 [96]
scientific workload suite. The baseline traditional system was 16 cores and 8kB of instruc-
tion and data cache per core. The equivalent performing system in NTC was 16 cores in
clusters of 4 cores sharing a 24kB instruction and data cache. Snooping architecture results
are not included here because the snooping based approach always loses in static analysis.
The advantages of the snooping based approach occur when boosting needs to be quick
and when dirty blocks reside in the other L1’s, both conditions that do not occur in a static
analysis.

6.4.5 Results

Figure 6.9 presents the key findings. In the analysis two comparisons are made. First,
the system performance in boosted mode is compared. Second, for a fixed workload com-
pletion deadline the total energy of each system is compared.

In boosted mode the additional cache space provided by the NTC approach helps to
reduce the L1 cache miss rate and provide faster completion. However, within the same
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Figure 6.9: Comparison of NTC against Traditional Architectures. NTC is 40% more en-
ergy efficient in non-boosted mode, and runs 4% faster in boosted mode on
average.

thermal budget the cores/cache must run slower than the traditional approach since more
cache is powered on. This results in a tradeoff. For some benchmarks, such as Radix and
Cholesky, the decrease in cache miss rates dominates and the performance is improved.
However, for some benchmarks, such as LU and Water, there is not significant reduction
in cache miss rates and from the larger cache, and the degraded processor performance
dominates. Overall, most benchmarks see an increase in performance in NTC boosted
mode. The average performance improvement is 4%, while some benchmarks see as high
as 21%.

In the non-boosted mode thermal design consideration is removed and instead the anal-
ysis will compare optimal energy performance. For this experiment the total workload
completion time is fixed, and the processors and caches are slowed down to meet the dead-
line. For the NTC workloads, the shared cache provides single cycle sharing of data be-
tween cores in the same cluster. It also reduces snoop traffic on the bus between L1’s. This
coupled with the ability to share instruction cache space helps to reduce the total number of
cycles the NTC machine must run. Since it takes less cycles, the core speed can be reduced
and still meet the deadline. Figure 6.9 shows that for all the benchmarks, the NTC design
consumes less energy than the traditional CMP approach, by 40% on average.

Overall the NTC design provides a more energy efficient solution in non-boosted mode,
and when boosted can outperform a traditional design on benchmarks where cache capacity
is critical. The results show a system that is, on average, 40% more energy efficient in non-
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boosted mode, and 4% faster in boosted mode.

6.5 Transactional Bottlenecks

This study helps to illustrate how boosting helps to overcome two of the paralleliza-
tion complications mentioned in Section 6.2. First, in Section 6.2.1.1 Amdahl bottlenecks
limit the amount of parallelism that can be extracted from parallelization. With a transac-
tional memory system, conflict information can be used to boost cores that present such
bottlenecks. Second, Section 6.2.1.2 discussed the difficulties associated with parallel pro-
gramming. Transactional memory has been proposed to ease the programming effort by
making it simpler to write parallel code. However, naive coders may still create systems
with large transactions that have high conflict rates, further exacerbating the Amdahl bot-
tleneck problem. Blake et al. [12] showed that conflict rates can exceed 90% for some of
these workloads, and provide an interesting problem for parallel scalability.

Feature Description
Processors 16 Alpha ISA, 1 IPC @ 200-1400 MHz
L1 Caches Private Data and Instruction Caches, 64kB,

2-way associative, 64-byte line size, 1 cycle latency
Interconnect Shared bus at core speed
L2 Cache Shared 32MB, 16-way associative, 64-byte line size, 6 cycle latency
Main Memory 2048MB, 100 cycle latency
Linux Kernel Modified v2.6.18

Table 6.2: Simulation Parameters for Transactional Memory Analysis

6.5.1 Methodology

For this work a baseline system like the one from Blake et al. [12] is assumed. This
work uses a proactive conflict detection mechanism to reduce conflicts in the system. Each
time a transaction is scheduled in the system, a software runtime environment evaluates
the likelihood that the transaction will conflict with others running in the system. If it is
likely to conflict, the runtime environment defers scheduling the transaction and tries to
schedule something else instead. The boosting system leverages this by assigning credits
to the transaction in the system that was labeled as a potential conflict. If any transaction
exceeds a credit score, meaning it is holding up many other threads from running, it is
boosted to speed the completion.
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For this analysis several boosting techniques were explored. First, a system with 16
cores is examined where at most one core can boost at a time. To keep the comparison fair,
the TDP is kept the same for all cores. In this analysis several boosting ratios are examined.
In order to keep the designs iso-TDP, if a higher boosting ratio is used, then the nominal
voltage/frequency of the other cores must be lower. Thus resulting in performance losses
when there is no imbalance in the work (highly parallel). The second system analyzed is a
NTC style configuration, where several cores are turned off in order to boost a core. In this
system the nominal performance is not degraded when there are no boosting candidates, as
the voltage doesn’t need to be lowered to enable the boosting. However, since the cores are
shut off during the boosted period, if there were other useful work to be done in the system
some performance is lost.

6.5.2 Simulator and Benchmarks

The M5 simulator [10] was again used for this study and was modified to match the
system in [12]. A modified version of the Linux kernel that supports transactional memory
in M5 is used. The benchmarks used are from the STAMP [17] transactional memory
benchmark suite. The simulation parameters are presented in Table 6.2.

6.5.3 Results

Two different analysis are presented. First a study of how boosting helps overcome
transactional memory bottlenecks and high contention. Second a sensitivity analysis on the
impact of the boost latency on the most sensitive workload.

6.5.3.1 Boosting Results

Figure 6.10 presents the speedup for different levels of boosting normalized to a unipro-
cessor system given the same TDP. The boosting values signify the ratio of low frequency
to high frequency. For example Boost 4x represents a system where the boosted frequency
is four times larger than the non-boosted frequency. The first observation is that for trans-
actional workloads, for the same TDP all but intruder provide more performance than a
single core running much faster. In the case of intruder the conflict rate is high, indicating
the existence of many Amdahl bottlenecks. These bottlenecks cause the No Boost system
to only reach 55% of the performance of a single core machine running with the same TDP.
Boosting in this case, Boost 4x, helps to overcome some of these bottlenecks, bringing the
performance to within 10% of the uniprocessor system, a nearly 50% improvement for the
boosted system over the non-boosted system. In this case, too many Amdahl bottlenecks
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exist, and no amount of boosting can overcome them all. Delaunay is a similar benchmark
in that it has many conflicts, and a Boost 4x provides the best performance. For the rest of
the benchmarks, the contention rate is low and a modest boosting system, Boost 1.6x, pro-
vides the optimal performance. Overall boosting provides a 14% improvement on average
over the non-boosted case for a 1.6X level of boosting.
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Figure 6.10: Speedup of system compared to a full voltage uniprocessor design. In cases
where parallel low voltage systems do not perform as well as a uniprocessor
system, boosting techniques help to regain some of the lost performance. All
configurations are under same TDP.

The NTC boosting system provides a boost ratio of 2x, in Figure 6.10 the performance
of the NTC system is equivalent or better than that of the 1.6X boost system. Recall that
for the NTC configuration gains are made when there are no cores to boost, as in this
case it performs at the same rate as No Boost. When boosting occurs 3 cores must be
shut off, thus degrading parallel performance at the expensive of boosting the core. It is
expected that for systems with low percentages of boost time NTC will outperform all other
configurations, which is the case for Genome, Kmeans, Vacation, and Ssca2. In all these
cases the percentage of time a core is boosted is less than 20% of cycles.

A third observation is that depending on the amount of Amdahl bottlenecks in the sys-
tem, a different boosting ratio is optimal. For low contention benchmarks, like Ssca2 1.6X
boosting is optimal, however for more imbalanced workloads with higher contention, De-

launay, a boosting value of 4X is better. This motivates dynamically adapted boost ratio
systems, but is left as future work.
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Figure 6.11: Impact of boost latency on system for the Intruder benchmark. For latencies
under 100 cycles, the overhead is less than 10%.

6.5.3.2 Boosting Latency Sensitivity

The second study is an analysis of boosting latency. For this analysis the Intruder

benchmark is chosen, as it had the highest number of boosting occurrences and presents
the most sensitivity to the boosting latency.

Figure 6.11 shows the impact of boost latency on different levels of voltage boosting.
The main takeaway is that for boost latencies less than 50 cycles the impact on the system
is less than 5%. However, if the latency grows to beyond 100 cycles, then the impact can
begin to significantly slow down the system. So it is important to be able to boost the
system in 10’s of cycles, which is what the dual-Vdd design provides. DVFS on the other
hand takes 10,000’s of cycles to transition and could not react quickly enough to respond
to the transient bottlenecks.

6.6 Web Server Latency

6.6.1 Improving Server Response Time

Recently, the number and complexity of internet-scale services has seen explosive
growth. As users become accustomed to responsive and dynamic web content, data center
operators have become increasingly concerned with service response time [77]. In par-
ticular, maintaining service-level agreements (SLAs) is critical to running robust services.
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These performance constraints are often expressed by requiring the 99th-percentile latency
of all requests to be below a given time.

Unfortunately, server workloads are known to have service time distributions with high
variance [35]. The variability in request size, coupled with often bursty traffic, leads to
response times with long-tails. Currently, there are few ways to achieve the desired 99th-
percentile response times other than over-provisioning the system.

Boosting provides an alternative to over-provisioning. It can produce tighter latency
distributions—reducing the 99th-percentile latency—by selectively boosting long-running
requests. Most services are designed such that they are request-level parallel: each server
request (e.g., requesting a web page), runs on a single thread on a single cpu. Accordingly,
cpus running long requests—those in the tail of the distribution—can be boosted to reduce
the 99th-percentile latency.

6.6.2 Methodology

To evaluate the effectiveness for server workloads, Stochastic Queueing Simulation

(SQS) [62] is used. SQS is a event-based, stochastic queuing theoretic simulator used
to model performance tradeoffs for data center workloads. Workloads are represented by
empirical inter-arrival and service time distributions measured on production servers. We
extend SQS to allow cpu boosting by modulating cpu service rates.

We use a simple policy to control which requests are boosted. If a request has been in
service longer than the threshold time, it is marked for boosting. Provided that no other
cpus are boosted, this request is immediately boosted. If another cpu is currently boosted,
the current cpu is put in a queue. After a boosted cpu finishes service, the queue is inspected
and cpus are boosted in first come first serve order if their request has not otherwise finished.
Our policy is simple, yet effective and demonstrates the utility of the boosting mechanism;
we leave evaluating more complex policies for future work.

6.6.3 Results

To evaluate the effectiveness of boosting, we first analyze the response time distribution
of a sixteen cpu server running the Web workload using SQS. Next, we compare the re-
sponse time distribution of the server with cpus running 60% slower (NTC). We investigate
if we can meet the same 99th-percentile target with these slower cpus by using boosting.
Our boost-enabled server can boost a single cpu to 6x the nominal frequency.

The CDF of response time for each scenario is shown in Figure 6.12 and the PDF in
Figure 6.13. Viewing the response time as a CDF allows us to observe how the quantiles
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Figure 13: Response Time CDF. Boosting re-
duces the 99th-percentile delay by 35%. A tra-
ditional system with the same 99th-percentile as
boosting has a 45% higher TDP.
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Figure 14: Response Time PDF. The boosted
core shifts the mean to the right, but brings the
99th percentile in. The boosted system trades off
the latency of short requests to reduce the tail of
the distribution.

6.2 Results
To evaluate the effectiveness of boosting, we first analyze the
response time distribution of a sixteen core system running
a web server workload in SQS. The empirical data for this
server workload is pulled from actual production servers as
discussed in [17]. Next, we compare the response time distri-
bution of the server with cores running 60% slower (NTC),
where the thermal power budget is 40% lower. We inves-
tigate if we can meet the same 99th-percentile target with
these slower cores by using boosting. Our boost-enabled
server can be boost a single core to 6x the nominal frequency.

The CDF of response time for each scenario is shown in Fig-
ure 13 and the PDF in Figure 14. Viewing the response time
as a CDF allows us to observe how the quantiles (e.g., 99th-
percentile) change for each case. The response distribution
of the unaltered system (“Base”), has a 99th-percentile la-
tency of 767ms. Naturally, the slower cores (“NTC”) have a
much larger 99th-percentile latency of 1.2s. However, with
boosting (“NTC w/ Boost”) we are able to achieve a 99th-
percentile latency of 780ms—nearly the same as the base
system.

To provide a different view of boosting’s effect, Figure 14
provides the PDF of response time. There are two impor-
tant effects in this figure. The first is that the PDF has a
small value for lower latency. For example, in the 10 to 20ms
region the PDF mass is much lower for boosted NTC (“NTC
w/ Boost”) than for the base system (“Base”). This demon-
strates that jobs that would typically finish inordinately fast
now take longer. The second phenomenon is that the PDF
values for mid-range latency (50-200ms) are higher for boost
NTC (“NTC w/ boost) than for the other systems. Hence,
we find that voltage boosting tends to pull low-latency and
high-latency requests towards the middle of the distribution.

It is important to highlight that we are reducing the latency
of 99th-percentile at the expense of longer delays for smaller
requests. In other words, while the tail of the boosted NTC

system is now shorter, the lower quantile latency increases.
The median latency of the NTC system without boosting
is 30ms, whereas it is 47ms with boosting (this region is
not shown in Figure 13, which just provides detail at higher
quantiles).

Overall, the 99th-percentile latency is reduced by 35% when
6x boosting is employed. In order for a traditional design
to achieve the same 99th-percentile latency, it would need to
run 60% faster and would carry with it a 40% higher thermal
power budget.

7. RELATED WORK
There has been considerable work on sub-threshold process-
ing [26, 7, 23], however most of this work targeted small,
low frequency designs for applications like sensor nets, or
RFID. Research in the NTC region [8, 25] has focused on
energy reduction but left parallelization complications as fu-
ture work. This work builds on these previous works by
laying out mechanisms to overcome the problems associated
with parallel execution, such as Amdahl bottlenecks.

There is a long history of work in heterogeneous, or asym-
metric multicore systems. Early work in such single-ISA
systems was done to reduce power consumption [12, 13, 14,
1]. These early research ideas focused on creating a system
with cores of the same-ISA but different performance charac-
teristics. Our work differs in that we propose using identical
cores. However, it is similar in nature because asymmetry
in the system is created by increasing the frequency of cores
via boosting.

More recent work in the area of asymmetric systems has
focused on overcoming bottlenecks. One recent approach
proposed by Suleman et al. [21] looks at overcoming bot-
tlenecks by shipping critical sections of execution to a “Big
Core”. This work is similar in goal to our own, but differs in
approach. While their work migrates critical sections to a
larger core, our approach boosts the critical section in place
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Figure 6.12: Response Time CDF.
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(e.g., 99th-percentile) change for each case. The response distribution of the unaltered
system, Base, has a 99th-percentile latency of 763ms. Naturally the slower cpus, NTC,
have a much larger 99th-percentile latency of 1.2s. However, with boosting, NTC w/Boost,
we are able to achieve a 99th-percentile latency of 765ms, nearly the same as the base
system.

To provide a different view of boosting’s effect, Figure 6.13 provides the PDF of re-
sponse time. There are two important effects in this figure. The first is that the PDF has a
small value for lower latency. For example, in the 10 to 20ms region the PDF mass is much
lower for NTC w/Boost than for Base. This demonstrates that jobs that would typically
finish inordinately fast now take longer. The second phenomenon is that the PDF values
for mid-range latency (50-200ms) are higher for NTC w/Boost than for the other systems.
Hence, we find that voltage boosting tends to pull low-latency and high-latency requests
towards the middle of the distribution.

It is important to highlight that we are reducing the latency of 99th-percentile at the
expense of longer delays for smaller requests. In other words, while the tail of the NTC

w/Boost system is now shorter, the lower quantile latency increases. The median latency of
the NTC system without boosting is 31ms, whereas it is 47ms with boosting (this region is
not shown in Figure 6.12, which just provides detail at higher quantiles, but is displayed in
the tabular results in Figure 6.14).

Boost Percentage of Time Normalized Latency (ms) Packets Missing Normalized Core
Threshold (ms) One Core Boosted 50th 95th 99th 99th-Percentile Baseline 99th-Latency Power

50 18% 49 388 803 1.05 0.2% 30
70 17% 48 389 796 1.04 0.2% 29
100 14% 47 392 750 0.98 0.0% 29
130 13% 47 396 765 1.00 0.0% 29
200 10% 46 412 774 1.01 0.0% 28
300 7% 43 439 793 1.04 0.2% 28
400 6% 42 473 821 1.08 0.3% 27
500 5% 41 515 846 1.11 0.5% 27
600 4% 39 536 878 1.15 0.8% 26

NTC (No Boost) 1300 0% 31 446 1211 1.59 1.3% 24
Baseline N/A N/A 19 281 763 1.00 0.0% 100
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Figure 6.14: Breakdown of Baseline, NTC without boosting, and several boosting thresh-
olds. Showing the impact of boosting threshold on latency, power, and boost-
ing percentages. 16-core system. Power normalized to 100W Baseline.

Figure 6.14 presents the impact of the boosting threshold on the performance of boost-
ing. The entry in bold, 130ms, is the one plotted in Figure 6.12. These results are presented
in graphical form in Figure 6.15. From right to left in the graph (decreasing boosting
threshold) the result is that more requests are selected to be boosted, and the boosting per-
centage increases. This correlates to an increase in power. The percentage of lost packets
also decreases as the boosting threshold is lowered, as more requests meet the deadline.
For the range of 70 to 200 ms the boosting system does not drop any packets that were
handled by the full voltage baseline system. If the threshold is lowered below this point
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non-critical requests start to boost. As a result, because only one cpu can boost at a time,
critical requests become stalled behind these and start missing the deadline.
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Figure 6.15: Impact of boosting threshold on the 99th-Percentile latencies.

Overall, the 99th-percentile latency is reduced by 35% when 6x boosting is employed
compared to the non-boosted NTC system. In order for a traditional non-boosted design to
achieve the same latency, it would need to run 60% faster and consume 3.4X more power.

6.7 Related Work

6.7.1 Dynamic Voltage Scaling

There has been considerable research in the area of DVFS, however, this Chapter dif-
fers in two main ways from the proposed voltage boosting work. First, this Chapter ad-
vocates designing the system for energy efficient operation and raising the voltage, where
DVFS has traditionally been applied to existing high voltage designs where the voltage is
simply lowered. Second, the design presented in this Chapter uses fast voltage boosting—
transitioning in 10’s of cycles—in order to overcome short lived bottlenecks. the goal in
DVFS work is to adapt to phase changes in program behavior. The traditional time frames
for DVFS techniques have been 10,000’s of cycles or longer. This transition time allows
for the system to adapt to longer, more phasic behavior but prevents it from being able to
remove short-lived bottlenecks. DVFS is actually a complimentary technique to fast volt-
age boosting. A system could use fast voltage boosting to overcome transient bottlenecks
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or serialization points, while DVFS could be used to adapt to longer phasic changes in
behavior or to adjust the level to which boosting occurs.

There is research on fast DVFS; for example, recent work by Kim et al. [51] on per core
DVFS. It uses on-chip regulators to provide separate operating voltages for each cpu on
chip. They seek to provide faster DVFS response time by bringing the voltage regulators
on chip. While the goal of keeping the transition latency low is the same, their work
focuses on providing dynamic control to all cpus. This Chapter differs in that, among
other things, only one cpu is allowed to transition at a time to reduce voltage fluctuations
on the power rails. This allows for a simpler on-chip power delivery system without the
need of complex analog and DVFS control circuitry. The proposed dual-Vdd rail design
enables faster voltage switching, while avoiding the power overheads associated with on-
chip regulators.

6.7.2 Heterogenous Architectures for Bottlenecks

There is a long history of work in heterogeneous, or asymmetric multicore systems.
Early work in such single-ISA systems was done to reduce power consumption [5, 53, 54,
55]. These early research ideas focused on creating a system with cores of the same-ISA
but different performance characteristics. This Chapter differs in that it proposes using
identical cores. However, it is similar in nature because asymmetry in the system is created
by boosting some cores frequencies.

More recent work in the area of asymmetric systems has focused on overcoming bot-
tlenecks. One recent approach proposed by Suleman et al. [83] looks at overcoming bottle-
necks by shipping critical sections of execution to a Big Core. This work is similar in goal
to the voltage boosting in this Chapter, but differs in approach. While their work migrates
critical sections to a larger core, the technique in this Chapter boosts the critical section in
place (since any core can be boosted). When they migrate the critical section the execution
context—processor state and cache data—must migrate across the system, increasing the
latency to boost a critical section. In this Chapter the approach allows boosting to happen
at a much quicker granularity, because the critical section is boosted in place where cache
data is already present.

6.8 Conclusions

Power considerations are now at the forefront of research in not only mobile devices,
but also desktop and server markets. Traditional approaches simply try to reduce the power
of conventional systems, but the power reductions are limited by variation and leakage
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concerns. Starting from scratch, designers can create systems optimized for NTC oper-
ation that are aware of variation and leakage concerns. This work showed that designs
targeted for NTC operation can achieve, on average, 40% better energy efficiency than a
traditional design. However, these systems rely on parallelization of workloads to achieve
efficiency. Parallelization can present major difficulties, such as coding and verification,
serial bottlenecks, and increased packet latency.

This chapter also proposes a system in which dual-Vdd rails are used to create NTC
systems with the ability to raise the performance of a subset of cores beyond the original
design point—voltage boosting. Simulation shows that voltage boosting can overcome
parallelization bottlenecks introduced in transactional memory workloads, and that for a
boosting level of 1.6x, the average performance of workloads can be improved by 12%. In
web server workloads, reducing the frequency and increasing the parallelism of the system
saves power and maintains throughput, however individual request latency is increased.
Results show that boosting can reduce the 99th-percentile of request latency by as much as
35% when boosting at levels of 6x, and reduces the power consumption by more than 70%
compared to a traditional design with the same 99th-percentile latency target.
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CHAPTER 7

Many-Core Architectures

Future chip designs will contain 100’s of cores—many-core systems—and this Chapter
takes the NTC architecture to the extreme. 3D chip integration—where multiple layers of
silicon are stacked in the z-dimension—is explored as a means to complete such a sys-
tem. This Chapter presents Centip3De, a near-threshold 7-layer 3D system that contains
128 ARM Cortex-M3 cores and 256MB of stacked DRAM, Figure 7.1. Centip3De uses
the unique aspects of near-threshold computing to create highly energy efficient compute
clusters. By doing so, 9.28 GOPs/Watt is achieved in a relatively old, 130nm technology.
Centip3De uses Tezzarons through-silicon via based 3D stacking and stacked DRAM [31].
Work in this chapter was done with the collaboration of my colleagues Dave Fick and
Bharan Giridhar.

7.1 Introduction

Recent high performance IC design has been dominated by power density constraints
resulting in increasingly wide multi-core designs [90]. Supply voltage scaling has not kept
pace with feature scaling, resulting in die where only a portion of the transistors can be
activated. The CMOS roadmap includes 3D integration [87] and FinFET devices [37],
which will increase device count for a given area even further. These devices will not be
usable, however, without viable strategies to reduce power consumption.

In this Chapter, we propose using near-threshold computing (NTC) to address this is-
sue where cores are operated near the threshold voltage where power and performance
are balanced and energy efficiency is increased significantly compared to operating at the
highest wear-out limited supply voltage. For instance, in the Centip3De system presented
in this Chapter, we operate cores at 677mV (vs. 1.5V nominal supply) where their energy
efficiency is increased by 4.8X and power consumption is reduced by 9.6x. Since power
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Figure 7.1: Cross section of the 3D stacked Centip3De chip.

consumption is dramatically lowered, NTC is an attractive match for 3D design which has
limited power dissipation capabilities allowing designers to take advantage of the efficiency
and performance benefits of 3D design. In this Chapter we present Centip3De, a 3D NTC
128-core system, which operates at 9.28GOPS/W which marks a 4.8X energy efficiency
improvement compared to running at full voltage. In addition, Centip3De allows selected
cores to boost momentarily by 8X in frequency by ramping them to full voltage addressing
the need for single thread latency.

Recall from Chapter 4 that because of the higher leakage current in SRAMs compared
to logic, memories reach their optimal energy/delay trade-off earlier than cores. Hence,
we operate SRAMs at a higher supply voltage than cores in the NTC regime (870mV for
SRAM and 670mV for logic in this technology). As a result, SRAMs operate faster than
cores which is counter to traditional full voltage design. Centip3De takes advantage of
this by connecting four cores to each cache, which each operate at 1/4th the frequency and
communicate with the cache in a round-robin fashion. Attaching multiple cores to one
cache has the added advantage that coherence within the 4-core cluster is automatically
resolved, reducing the coherency traffic and overhead in the system. Further, as was dis-
cussed in Chapter 6, one or more cores can be disabled, allowing the remaining cores to be
boosted in performance. In Figure 7.3, a single core can operate at 8X the frequency. By
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Figure 7.2: Side view of the designed Centip3De chip. The chip consists of 7 layers stacked

and connected with through-silicon-vias. There are 4 logic layers consisting of
cores and caches, 2 layers of DRAM cells, and 1 layer of DRAM controller and
bond routing. There are 128 ARM M3 cores clustered in groups of 4 sharing a
cache.
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disabling the other 3 cores in the cluster, the power increase of the cluster is moderated and
the boosted core gains access to the entire cache space instead of sharing it with three other
cores. This further benefits the core performance by shielding it more effectively from the
DRAM memory latency.
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Figure 7.3: Diagram showing how 1, 2, and 4 core mode works in the Centip3De system as
well as analysis that shows the impact of clustering cores on Performance per
Watt.

7.2 Top Level Architecture

At top level, Centip3De has 128 ARM Cortex-M3 processing cores which are organized
into 32 four-core clusters (Figure 7.6). Each cluster has a 4-way 1kB instruction cache
and an 4-way 8kB data cache, which connect to 256MB of shared DRAM through a bus-

113



based 3D interconnect. The DRAM, bus interconnect, caches and cores can operate at
several scaled frequencies of each other and have independent voltage domains. The default
NTC configuration operates cores at 10MHz with 4 cores active per cluster and caches
operating at 40MHz. Based on the FO4 delay trends across technology, the 10MHz is
projected to translate to 93MHz in a 22nm technology. The frequency of the cache to
DRAM bus operates at 80MHz. By providing 2x8 128b memory buses, 20GB/s memory
bandwidth is supplied to the individual cores in NTC mode. Figure 7.11 shows the 4
core per cache configuration as well as the higher performance but lower energy efficient
boosted single thread performance modes. Depending on workload, Centip3De can be
configured to maximize single threaded performance, throughput, or a mixture of both.

3D design allows Centip3De to have greater bandwidth both within its bus system and
to DRAM. Global interconnect resources for the bus system were reduced by roughly half
by splitting the clusters across four layers, while the available maximum DRAM band-
width, 1.6 Tbps, would be nearly impossible to achieve in a conventional design. The
Tezzaron Octopus DRAM is partitioned into eight distinct vertically connected interfaces.
Each interface has both a 128 bit input and 128 bit output bus, and is connected to its own
DRAM controller. Centip3De’s bus system has a separate 128 bit bus for each of the eight
DRAM interfaces. These eight buses are duplicated in two communication columns (see
Figure 7.2), where four of the eight DRAM controllers exist at the bottom of each column,
and columns are bridged on the bottom-most layer.

The floorplan of the chip separates caches and cores into separate layers such that there
are two cache layers and two core layers. The four cores of a computer cluster communi-
cate with their cache through a face-to-face (F2F) interface, which reduces routing resource
requirements by providing interface pins in the middle of the design for each. The caches
each connect to the closest communication column on their layer. By traveling vertically
between the four core and cache layers, the communication columns reduce required rout-
ing resources by approximately half when compared to a single-layer floorplan - similar
gains are obtained in energy and performance for global communication.

Mask cost and design effort were reduced by designing a single core layer and a single
cache layer and reusing the layers twice in the stack, post-fabrication. A core layer wafer
and a cache layer wafer are bonded face to face to create a core/cache pair. Two of these
pairs are created and then thinned on the cache side to 13 microns. The two pairs are then
bonded back-to-back (B2B) on the cache side to create a four layer stack. Once the four
layer stack is created, it is thinned and diced, and the individual dies are bonded to a thinned
3-layer DRAM wafer (Fig 1). The 4-layer logic layers must be diced first since the core
and cache layers are much smaller than the DRAM layers.
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Since the core and cache layers are identical, a pull-up circuit is included to identify
the position of each layer. The interfacing DRAM surface provides copper tracing and
wirebonding pads for the logic layers (Figure 7.2). Through-silicon vias (TSVs) in the
bottom core layer connect to this copper tracing, while TSVs in the top core layer will
remain isolated within the non-thinned substrate. By attaching a pull-up pad to one of these
TSVs and grounding the wirebonding pad, the bottom core layer can identify itself with a
zero signal, and the top core layer can identify itself with a one signal. This information
is provided to the cache-cache B2B interface to control tristate buffering on the vertical
buses, and to the replicated DRAM controllers, bus bridges, and PLLs to disable redundant
modules.

7.2.1 Variable Cache Access Architecture

As shown in Figure 7.4, the caches are able to operate in two modes: two core mode and
four core mode. In four core mode, three or four of the cores are enabled and each operate
with a clock that is 1/4th the frequency of the cache and 90 degrees out of phase from each
other. The cache accesses are pipelined internally to the cache while the core sees a single
cycle interface. The data tags are read in the first stage of the pipeline, while the data is
read in the third stage. By determining the correct way in the second stage of the pipeline,
the number of accesses to the data arrays are reduced, thereby increasing energy efficiency.
In two-core mode, one or two of the cores are enabled and each operate with a clock that
is half the frequency of the cache clock and are 180 degrees out of phase from each other.
The cache is still internally pipelined, however, the data arrays are read simultaneously
with the tag arrays due to the reduced number of pipeline stages, which increases energy
consumption per access. In both modes accesses are monitored for conflicts, which stall
later transactions until the first finishes. A custom 8T SRAM design is used to provide
adequate voltage scalability for the cache. A 128 bit cache line is used to match the bus
system, but each 32 bit word may be read and written independently.

7.2.2 Clock Network

The cache and core clocks are derived from the globally distributed system bus clock.
Due to the low parasitics of the TSVs, additional 3D considerations for the clock tree
design were not necessary. Scaling the core and cache voltages unequally, however, causes
the leaves of the distinct clock trees to become misaligned. The delay of each clock tree is
adjustable via a digitally controlled, tunable delay buffer at the root of the tree, and clock
tree alignment sensors are included (in situ) to assist in adjusting the trees (Figure 7.6).
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Figure 7.4: State diagram for cache accesses in 4 and 2 core mode. Note the access pattern

is the same for 1 core mode.
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Figure 7.5: Circuit diagrams for level convertors and clock dividers in the Centip3De chip.
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Figure 7.6: Diagram of the clock tree design for the 128 cores, 32 caches, and memory
controllers..
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These units and level converters are included between the core and cache interfaces, and
the cache to bus interfaces and are shown in Figure 7.5. Cache modes, alignment sensor
readings, delay generator settings, core enables, etc., are controlled via memory mapped
IO in Core 0 of the cluster, accessible via JTAG. The JTAG port for cores 1-3 are enabled in
series with Core 0 via control bits in Core 0, so that Cores 1-3 can be controlled via JTAG
as well.

7.3 Final Layout

Finally the Centip3De design was prepared for fabrication in a 130nm technology using
the Tezzaron 3D TSV technology [31]. Figures 7.7-7.10 show the final layout that was sent
for fabrication. Note that the core tiles, consisting of 4 ARM Cortex-M3 cores is the same
size as the cache tile, allowing them to be stacked directly above each other in a dense
manner.

ARM CORTEX 
M3 

DELALAYGEN
+COMPARATOR 

Figure 7.7: Final layout of the 4 core tile used in Centip3De.

MEM 
CNTR
L 

MEM 
CNTR
L 

CORE 
TILE 

Figure 7.8: Final layout of the entire core layer in Centip3De.
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Figure 7.9: Final layout of the cache for each cluster in Centip3De.

CACHE 
TILE 

STRESS 
TEST 

BUS 
CNTRL 

PLL 

PAD ARRAY 

ANALOGPAD 

BUS 
CNTRL 

Figure 7.10: Final layout of the entire cache layer in Centip3De.
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7.4 Evaluation

	
  
Figure 7.11: Power breakdown, operating voltages, and system analysis for the Centip3De

chip in 1, 2, and 4 core mode.

In this work we evaluate three configurations which represent a range of power/perfor-
mance operating points (Figure 7.3, 7.11) of the design sent for fabrication. At the time of
this dissertation the chip is still at fab so post-silicon measurements are not presented. At
peak efficiency, Centip3De operates the cores at near-threshold voltages and achieves 9.28
GOPS/Watt. High performance threads can operate in boosted modes which enable one or
two threads with the 2-core cache mode. One core and two core boosted modes provide the
same throughput, 2.56 GOPS (which is expected to scale to 24GOPS in a 22nm technol-
ogy), while enabling a trade-off between latency and power (Figure 7.11). Compared to a
45nm implementation of an Intel Atom processor this 130nm Centip3De design achieves
6.4X better energy efficiency (GOPS/W).
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CHAPTER 8

Related Work

Each chapter contains related work for that section. This Chapter focuses on the 2
overarching related works most relevant to the entire dissertation.

8.1 Subthreshold Circuits and Architectures

There has been numerous works looking at subthreshold design [101, 93, 23, 67, 14].
This work differs because they focus on much lower performance constraints. For appli-
cations that require only kHz of performance, the energy optimal point is lower than the
threshold voltage. The energy at slightly higher voltages increases by around 2X, while the
performance is an order of magnitude better. This region, near threshold, is the focus of
our work.

8.2 Energy-Performance Tradeoff Analysis

The research done to determine optimal architectures and voltages for a given per-
formance target by Azizi et al. [4] is closest in nature to this dissertation. Both seek to
find the best architecture and voltage to create an energy-efficient system. However, this
dissertation looks at new architectures, while the Azizi work focuses only on traditional
architectures. They simply explore simple design knobs, such as issue width and in-order
versus out-of-order cores. This work looks to completely redesign the architecture based
on the new performance characteristics with the use of techniques such as clustering, which
becomes an interesting design option at lower voltages.
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CHAPTER 9

Conclusions

As Moore’s law continues to provide designers with more transistors on a chip, power
budgets are beginning to limit the applicability of these additional transistors in conven-
tional CMOS design. This dissertation looked back at the feasibility of voltage scaling to
reduce energy consumption. Although subthreshold operation is well known to provide
substantial energy savings it has been relegated to a handful of applications due to the cor-
responding system performance degradation. The dissertation then turned to the concept
of near-threshold computing (NTC), where the supply voltage is at or near the switch-
ing voltage of the transistors. This regime enables energy savings on the order of 10X,
with only a 10X degradation in performance, providing a much better energy/performance
trade-off than subthreshold operation. This dissertation then identified three major barriers
to widespread adoption of NTC and current research to overcome them. The three barriers
addressed were: 1) performance loss; 2) increased variation; and 3) increased functional
failure.

The focus of the remaining chapters of this dissertation was on NTC architectures and
techniques to overcome the performance degradation. The architectures included single-
core, multi-core, digital signal processing, and many-core architectures along with the ad-
dition of voltage boosting techniques to overcome short-lived bottlenecks. The dissertation
culminated with the design and fabrication of a prototype system, Centip3De. Centip3De
is a 7-layer 3D stacked chip with 128 ARM Cortex-M3 cores and 256MB of DRAM. Anal-
ysis of the system in simulation showed that a 130nm implementation of Centip3De has
6.4X better energy efficiency than a Intel Atom chip implemented in 45nm.

In conclusion, with traditional device scaling no longer providing energy efficiency
improvements, the solution to this energy crisis is the universal application of aggressive
low-voltage operation, namely NTC, across all computation platforms.
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